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Abstract

Neural encoder-decoder models of machine
translation have achieved impressive results,
rivalling traditional translation models. How-
ever their modelling formulation is overly
simplistic, and omits several key inductive bi-
ases built into traditional models. In this paper
we extend the attentional neural translation
model to include structural biases from word
based alignment models, including positional
bias, Markov conditioning, fertility and agree-
ment over translation directions. We show im-
provements over a baseline attentional model
and standard phrase-based model over sev-
eral language pairs, evaluating on difficult lan-
guages in a low resource setting.

1 Introduction

Recently, models of end-to-end machine translation
based on neural network classification have been
shown to produce excellent translations, rivalling or
in some cases surpassing traditional statistical ma-
chine translation systems (Kalchbrenner and Blun-
som, 2013; Sutskever et al., 2014; Bahdanau et al.,
2015). This is despite the neural approaches using
an overall simpler model, with fewer assumptions
about the learning and prediction problem.

Broadly, neural approaches are based around the
notion of an encoder-decoder (Sutskever et al.,
2014), in which the source language is encoded into
a distributed representation, followed by a decoding
step which generates the target translation. We focus

on the attentional model of translation (Bahdanau et
al., 2015) which uses a dynamic representation of
the source sentence while allowing the decoder to
attend to different parts of the source as it gener-
ates the target sentence. The attentional model raises
intriguing opportunities, given the correspondence
between the notions of attention and alignment in
traditional word-based machine translation models
(Brown et al., 1993).

In this paper we map modelling biases from word
based translation models into the attentional model,
such that known linguistic elements of translation
can be better captured. We incorporate absolute po-
sitional bias whereby word order tends to be simi-
lar between the source sentence and its translation
(e.g., IBM Model 2 and (Dyer et al., 2013)), fer-
tility whereby each instance of a source word type
tends to be translated into a consistent number of
target tokens (e.g., IBM Models 3, 4, 5), relative
position bias whereby prior preferences for mono-
tonic alignments/attention can be encouraged (e.g.,
IBM Model 4, 5 and HMM-based Alignment (Vogel
et al., 1996)), and alignment consistency whereby
the attention in both translation directions are en-
couraged to agree (e.g. symmetrisation heuristics
(Och and Ney, 2003) or joint modelling (Liang et
al., 2006; Ganchev et al., 2008)).

We provide an empirical analysis of incorporat-
ing the above structural biases into the attentional
model, considering low resource translation sce-
nario over four language-pairs. Our results demon-
strate consistent improvements over vanilla encoder-
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Figure 1: Attentional model of translation (Bahdanau et al.,

2015). The encoder is shown below the decoder, and the edges

connecting the two corresponding to the attention mechanism.

Heavy edges denote a higher attention weight, and these values

are also displayed in matrix form, with one row for each target

word.

decoder and attentional model in terms of the per-
plexity and BLEU score, e.g. up to 3.5 BLEU points
when re-ranking the candidate translations gener-
ated by a state-of-the-art phrase based model.

2 The attentional model of translation

We start by reviewing the attentional model of trans-
lation (Bahdanau et al., 2015), as illustrated in
Fig. 1, before presenting our extensions in §3.

Encoder The encoding of the source sentence is
formulated using a pair of RNNs (denoted bi-RNN)
one operating left-to-right over the input sequence
and another operating right-to-left,

h→i = RNN(h→i−1, r
(s)
si

)

h←i = RNN(h→i+1, r
(s)
si

)

where h→i and h←i are the RNN hidden states. The
left-to-right RNN function is defined as

h→i = tanh
(
W→

si r
(s)
si

+W→
shh

→
i−1 + b→s

)
(1)

where h→0 ∈ RH is a learned parameter vector, as
are R(s) ∈ RVS×E , W→

si ∈ RH×E , W→
sh ∈ RH×H

and b→s ∈ RH , with H the number of hidden units,
VS the size of the source vocabulary and E the word
embedding dimensionality.1 Each source word is

1Similarly, h←0 ∈ RH ,W←
si ∈ RH×E ,W←

sh ∈
RH×H , b←s ∈ RH are the parameters of the right-to-left RNN.
Note that we use a long short term memory unit (Hochreiter
and Schmidhuber, 1997) in place of the RNN, shown here for
simplicity of exposition.

then represented as a pair of hidden states, one from

each RNN, ei =
[
h→i
h←i

]
. This encodes not only

the word but also its left and right context, which
can provide important evidence for its translation.

A crucial question is how this dynamic sized ma-
trix E = [e1, e2, . . . , eI ] ∈ RI×H can be used in
the decoder to generate the target sentence. As with
Sutskever’s encoder-decoder, the target sentence is
created left-to-right using an RNN, while the en-
coded source is used to bias the process as an auxil-
iary input. The mechanism for this bias is by atten-
tional vectors, i.e. vectors of scores over each source
sentence location, which are used to aggregate the
dynamic source encoding into a fixed length vector.

Decoder The decoder operates as a standard RNN
over the translation t, formulated as follows

gj = tanh
(
W(th)gj−1 + W(ti)r

(t)
tj−1

+ W(ta)cj

)
(2)

uj = tanh
(
gj + W(uc)cj + W(ui)r

(t)
tj−1

)
(3)

tj ∼ softmax
(
W(ou)uj + b(to)

)
(4)

where the decoder RNN is defined analogously to
Eq 1 but with an additional input, the source atten-
tion component cj ∈ R2H and weighting matrix
W(ta) ∈ RH×2H . The hidden state of the recurrence
is then passed through a single hidden layer2 (Eq 3)
in combination with the source attention and target
word using weighting matrices W(uc) ∈ RH×2H

and W(ui) ∈ RH×E . In Eq 4 this vector is trans-
formed to be target vocabulary sized, using weight
matrix W(ou) ∈ RVT×H and bias b(to) ∈ RVT , af-
ter which a softmax is taken, and the resulting nor-
malised vector used as the parameters of a Categor-
ical distribution in generating the next target word.

The presentation above assumes a simple RNN
is used to define the recurrence over hidden states,
however we can easily use alternative formula-
tions of recurrent networks including multiple-
layer RNNs, gated recurrent units (GRU; Cho et
al. (2014)), or long short-term memory (LSTM;
Hochreiter and Schmidhuber (1997)) units. These
more advanced methods allow for more efficient
learning of more complex concepts, particularly

2In Bahdanau et al. (2015) they use a max-out layer for this
final step, however we found this to be a needless complication,
and instead use a standard hidden layer with tanh activation.
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long distance effects. Empirically we found LSTMs
to be the best performing, and therefore use these
units herein.

The last key detail is the attentional component cj

in Eqs 2 and 3, which is defined as follows

fji = v> tanh
(
W(ae)ei + W(ah)gj−1

)
(5)

αj = softmax (fj)

cj =
∑

i

αjiei

with the scalars fji denoting the compatibility be-
tween the target hidden state gj−1 and the source en-
coding ei. This is defined as a neural network with
one hidden layer of size A and a single output, pa-
rameterised by W(ae) ∈ RA×2H , W(ah) ∈ RA×H

and v ∈ RA. The softmax then normalises the
scalar compatibility values such that for a given tar-
get word j, the values of αj can be interpreted as
alignment probabilities to each source location. Fi-
nally, these alignments are used to to reweight the
source components E to produce a fixed length con-
text representation.

Training of this model is done by minimising
the cross-entropy of the target sentence, measured
word-by-word as for a language model. We use
standard stochastic gradient optimisation using the
back-propagation technique for computation of par-
tial derivatives according to the chain rule.

3 Incorporating Structural Biases

The attentional model, as described above, provides
a powerful and elegant model of translation in which
alignments between source and target words are
learned through the implicit conditioning context af-
forded by the attention mechanism. Despite its ele-
gance, the attentional model omits several key com-
ponents of a traditional alignment models such as
the IBM models (Brown et al., 1993) and Vogel’s
hidden Markov Model (Vogel et al., 1996) as imple-
mented in the GIZA++ toolkit (Och and Ney, 2003).
Combining the strengths of this highly successful
body of research into a neural model of machine
translation holds potential to further improve mod-
elling accuracy of neural techniques. Below we out-
line methods for incorporating these factors as struc-
tural biases into the attentional model.

3.1 Position bias
First we consider position bias, based on the obser-
vation that a word at a given relative position in the
source tends to align to a word at a similar relative
position in the target, i

I ≈ j
J (Dyer et al., 2013).

Related, the IBM model 2 learns discrete mappings
between positions i and j conditioned on sentence
lengths I and J .

We include a position bias through redefining the
pre-normalised attention scalars fji in Eq 5 as:

fji = v> tanh
(
W(ae)ei + W(ah)gj−1+

W(ap)ψ(j, i, I)
)

(6)

where the new component in the input is a simple
feature function of the positions in the source and
target sentences and the source length,

ψ(j, i, I) =
[

log(1 + j), log(1 + i), log(1 + I)
]>

and W(ap) ∈ RA×3. We exclude the target length
J as this is unknown during decoding, as a par-
tial translation can have several (infinite) different
lengths. The use of the log(1+·) function is to avoid
numerical instabilities from widely varying sentence
lengths. The non-linearity in Eq 6 allows for com-
plex functions of these inputs to be learned, such as
relative positions and approximate distance from the
diagonal, as well as their interactions with the other
inputs (e.g., to learn that some words are exceptional
cases where a diagonal bias should not apply).

3.2 Markov condition
The HMM model of translation (Vogel et al., 1996)
is based on a Markov condition over alignment ran-
dom variables, to allow the model to learn local ef-
fects such as when i ← j is aligned then it is likely
that i + 1 ← j + 1 or i ← j + 1. These corre-
spond to local diagonal alignments or one-to-many
alignments, respectively. In general, there are many
correlations between the alignments of a word and
the alignments of the preceding word.

Markov conditioning can also be incorporated in
a similar manner to positional bias, by augmenting
the attentional input from Eqs 5 and 6 to include:

fji = v> tanh
(
. . .+ W(am)ξ1(αj−1; i)

)
(7)
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where . . . abbreviates the ei, gj−1 and ψ compo-
nents from Eq 6, and ξ1(αj−1) provides a fixed di-
mensional representation of the attention state for
the preceding word. It is not immediately obvious
how to incorporate the previous attention vector as
α is dynamically sized to match the source sentence
length, thus using it directly would not generalise
over sentences of different lengths. For this reason,
we make a simplification by just considering local
moves offset by ±k positions, that is,

ξ1(αj−1; i) =
[
αj−1,i−k, .., αj−1,i, .., αj−1,i+k

]>
with W(am) ∈ RA×(2k+1). Our approach is
likely to capture the most important alignments pat-
terns forming the backbone of the alignment HMM,
namely monotone, 1-to-many, and local inversions.

3.3 Fertility

Fertility is the propensity for a word to be translated
as a consistent number of words in the other lan-
guage, e.g., Iseseisvusdeklaratsioon (Et) translates
as 3-4 words in English, namely (the) Declaration
of Independence. Fertility is a central component in
the IBM models 3–5 (Brown et al., 1993). Incor-
porating fertility into the attentional model is a little
more involved, and we present two techniques for
doing so.

Local fertility First we consider a feature-based
technique, which includes the following features

ξ2(α<j ; i) =

∑
j′<j

αj′,i−k, ..,
∑
j′<j

αj′,i, ..,
∑
j′<j

αj′,i+1

>

and the corresponding feature weights, i.e., W(af) ∈
RA×(2k+1). These sums represent the total align-
ment score for the surrounding source words, simi-
lar to fertility in a traditional latent variable model,
which is the sum over binary alignment random vari-
ables. A word which already has several alignments
can be excluded from participating in more align-
ments, thus combating the garbage collection prob-
lem. Conversely words that tend to need high fertil-
ity can be learned through the interactions between
these features and the word and context embeddings
in Eq 7.

Global fertility A second, more explicit, tech-
nique for incorporating fertility is to include this
as a modelling constraint. Initially we considered
a soft constraint based on the approach in (Xu et
al., 2015), where an image captioning model was
biased to attend to every pixel in the image ex-
actly once. In our setting, the same idea can be
applied through adding a regularisation term to the

training objective of the form
∑

i

(
1−∑j αj,i

)2
.

However this method is overly restrictive: enforc-
ing that every word is used exactly once is not ap-
propriate in translation where some words are likely
to be dropped (e.g., determiners and other function
words), while others might need to be translated
several times to produce a phrase in the target lan-
guage.3 For this reason we develop an alternative
method, based around a contextual fertility model,
p(fi|s, i) = N (µ(ei), σ2(ei)

)
which scores the fer-

tility of source word i, defined as fi =
∑

j αj,i, us-
ing a normal distribution4 parameterised by µ and
σ2, both positive scalar valued non-linear functions
of the source word encoding ei. This is incorporated
into the training objective as an additional additive
term,

∑
i log p(fi|s, i), for each training sentence.

This formulation allows for greater consistency in
translation, through e.g., learning which words tend
to be omitted from translation, or translate as sev-
eral words. Compared to the fertility model in IBM
3–5 (Brown et al., 1993), ours uses many fewer pa-
rameters through working over vector embeddings,
and moreover, the BiRNN encoding of the source
means that we learn context-dependent fertilities,
which can be useful for dealing with fixed syntac-
tic patterns or multi-word expressions.

3.4 Bilingual Symmetry

So far we have considered a conditional model of
the target given the source, modelling p(t|s). How-
ever it is well established for latent variable transla-
tion models that the alignments improve if p(s|t) is

3Modern decoders (Koehn et al., 2003) often impose the re-
striction of each word being translated exactly once, however
this is tempered by their use of phrases as translation units rather
than words, which allow for higher fertility within phrases.

4The normal distribution is deficient, as it has support for
all scalar values, despite fi being bounded above and below
(0 ≤ fi ≤ J). This could be corrected by using a truncated
normal, or various other choices of distribution.
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Figure 2: Symmetric training with trace bonus, computed as

matrix multiplication, − tr(αs←tαs→t >). Dark shading indi-

cates higher values.

also modelled and the inferences of both directional
models are combined – evidenced by the symmetri-
sation heuristics used in most decoders (Koehn et al.,
2005), and also by explicit joint agreement training
objectives (Liang et al., 2006; Ganchev et al., 2008).
The rationale is that both models make somewhat
independent errors, so an ensemble stands to gain
from variance reduction.

We propose a method for joint training of
two directional models as pictured in Figure 2.
Training twinned models involves optimising
L = − log p(t|s)− log p(s|t) + γB where, as
before, we consider only a single sentence pair,
for simplicity of notation. This corresponds to a
pseudo-likelihood objective, with the B linking
the two models.5 The B component considers the
alignment (attention) matrices, αs→t ∈ RJ×I and
αt←s ∈ RI×J , and attempts to make these close
to one another for both translation directions (see
Fig. 2). To achieve this, we use a ‘trace bonus’,
inspired by (Levinboim et al., 2015), formulated as

B = − tr(αs←t >αs→t) =
∑

j

∑
i

αs←t
i,j αs→t

j,i .

As the alignment cells are normalised using the
softmax and thus take values in [0,1], the trace term
is bounded above by min(I, J) which occurs when
the two alignment matrices are transposes of each
other, representing perfect one-to-one alignments in
both directions

lang-pair # tokens (K) # types (K)
Zh-En 422 454 3.44 3.12
Ru-En 1639 1809 145 65
Et-En 1411 1857 90 25
Ro-En 1782 1806 39 24

Table 1: Statistics of the training sets, showing in each cell the

count for the source language (left) and target language (right).

4 Experiments

Datasets. We conducted our experiments with
four language pairs, translating between English↔
Romanian, Estonian, Russian and Chinese. These
languages were chosen to represent a range of trans-
lation difficulties, including languages with signifi-
cant morphological complexity (Estonian, Russian).
We focus on a (simulated) low resource setting,
where only a limited amount of training data is avail-
able. This serves to demonstrate the robustness and
generalisation of our model on sparse data – some-
thing that has not yet been established for neural
models with millions of parameters with vast poten-
tial for over-fitting.

Table 1 shows the statistics of the training sets.6

For Chinese-English, the data comes from the BTEC
corpus, where the number of training sentence pairs
is 44,016. We used ‘devset1 2’ and ‘devset 3’ as
the development and test sets, respectively, and in
both cases used only the first reference for evalu-
ation. For Romanian and Estonian, the data come
from the Europarl corpus (Koehn, 2005), where we
used 100K sentence pairs for training, and 3K for
development and 2K for testing.7 The Russian-
English data was taken from a web derived corpus
(Antonova and Misyurev, 2011). The dataset is split
into three parts using the same technique as for the
Europarl sets. During the preprocessing stage we
lower-cased and tokenized the data, and excluded
sentences longer than 30 words. For the Europarl

5We could share some parameters, e.g., the word embedding
matrices, however we found this didn’t make much difference
versus using disjoint parameter sets. We set γ = 1 herein.

6For all datasets words were thresholded for training fre-
quency≥ 5, with uncommon training and unseen testing words
replaced by an 〈unk〉 symbol.

7The first 100K sentence pairs were used for training, while
the development and test were drawn from the last 100K sen-
tence pairs, taking the first 2K for testing and the last 3K for
development.
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data, we also removed sentences containing head-
ings and other meeting formalities.8

Models and Baselines. We have implemented our
neural translation model with linguistic features
in C++ using the CNN library.9 We compared
our proposed model against our implementations
of the attentional model (Bahdanau et al., 2015)
and encoder-decoder architecture (Sutskever et al.,
2014). As the baseline, we used a state-of-the-art
phrase-based statistical machine translation model
built using Moses (Koehn et al., 2007) with the stan-
dard features: relative-frequency and lexical trans-
lation model probabilities in both directions; distor-
tion model; language model and word count. We
used KenLM (Heafield, 2011) to create 3-gram lan-
guage models with Kneser-Ney smoothing on the
target side of the bilingual training corpora.

Evaluation Measures. Following previous work
(Kalchbrenner and Blunsom, 2013; Sutskever et al.,
2014; Bahdanau et al., 2015; Neubig et al., 2015),
we evaluated all neural models using test set per-
plexities and translation results, as well as in an ad-
ditional re-ranking setting, using BLEU (Papineni
et al., 2002) measure. We applied bootstrap re-
sampling (Koehn, 2004) to measure statistical sig-
nificance, p < 0.05, of our models compared to
a baseline. For re-ranking, we generated 100-best
translations using the baseline phrase-based model,
to which we added log probability features from our
neural models alongside all the features of the under-
lying phrase-based model. We trained the re-ranking
models using MERT (Och, 2003) on development
sets with 100-best translations.

4.1 Analysis of Alignment Biases

We start by investigating the effect of various lin-
guistic constraints, described in Section 3, on the
attentional model. Table 2 presents the perplexity
of trained models for Chinese→English translation.
For comparison, we report the results of an encoder-
decoder-based neural translation model (Sutskever
et al., 2014) as the baseline. All other results are for
the attentional model with a single-layer LSTM as
encoder and two-layer LSTM as decoder, using 512

8E.g., (The sitting was closed at 10.20pm).
9https://github.com/clab/cnn/

configuration test #param (M)
Sutskever encdec 5.35 8.7
Attentional 4.77 15.0
+align 4.56 15.0
+align+glofer 5.20 15.5
+align+glofer-pre 4.31 15.5
+align+sym 4.44 30.1
+align+sym+glofer-pre 4.43 31.2

Table 2: Perplexity results for attentional model variants eval-

uated on BTEC zh→en, and number of model parameters (in

millions).
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Figure 3: Perplexity with training epochs on ro-en translation,

comparing several model variants.

embedding, 512 hidden, and 256 alignment dimen-
sions. For each model, we also report the number of
its parameters. Models are trained end-to-end using
stochastic gradient descent (SGD), allowing up to 20
epochs. We use a held-out development set for reg-
ularisation by early stopping, which terminated the
training after 5-10 epochs for most cases.

As expected, the vanilla attentional model greatly
improves over encoder-decoder (perplexity of 4.77
vs. 5.35), clearly making good use of the additional
context. Adding the combined positional bias, local
fertility, and Markov structure (denoted by +align)
further decreases the perplexity to 4.56. Adding the
global fertility (+glofer) is detrimental, however, in-
creases perplexity to 5.20. Interestingly, global fer-
tility helps to reduce the perplexity (to 4.31) when
used with the pre-training setting (+align+glofer-
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Figure 4: Example development sentence, showing the inferred attention matrix for various models for Et↔ En. Rows correspond

to the translation direction and columns correspond to different models: attentional, with alignment features (+align), global fertility

(+glofer), and symmetric joint training (+sym). Darker shades denote higher values and white denotes zero.

pre). In this case, it is refining an already excel-
lent model from which reliable global fertility es-
timates can be obtained. This finding is consistent
with the other languages, see Figure 3 which shows
typical learning curves of different variants of the
attentional model. Note that when global fertility
is added to the vanilla attentional model with align-
ment features, it significantly slows down training
as it limits exploration in early training iterations,
however it does bring a sizeable win when used to
fine-tune a pre-trained model. Finally, the bilin-
gual symmetry also helps to reduce the perplexity
scores when used with the alignment features, how-
ever, does not combine well with global fertility
(+align+sym+glofer-pre). This is perhaps an unsur-
prising result as both methods impose a often-times
similar regularising effect over the attention matrix.

Figure 4 illustrates the different attention matri-

ces inferred by the various model variants. Note the
difference between the base attentional model and
its variant with alignment features (‘+align’), where
more weight is assigned to diagonal and 1-to-many
alignments. Global fertility pushes more attention to
the sentinel symbols 〈s〉 and 〈/s〉. Determiners and
prepositions in English show much lower fertility
than nouns, while Estonian nouns have even higher
fertility. This accords with Estonian morphology,
wherein nouns are inflected with rich case mark-
ing, e.g., nõukoguga has the cogitative -ga suffix,
meaning ‘with’, and thus translates as several En-
glish words (with the council). The right-most col-
umn corresponds to joint symmetric training, with
many more confident attention values especially for
consistent 1-to-many alignments (difficult in English
and raskeid in Estonian, an adjective in partitive case
meaning some difficult).
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Lang. Pair Zh-En Ru-En Et-En Ro-En
Enc-Dec 5.35 61.9 18.2 10.3
Attentional 4.77 41.7 12.8 6.62
Our Work 4.31 39.9 11.8 5.89
Lang. Pair En-Zh En-Ru En-Et En-Ro
Enc-Dec 8.60 67.3 31.4 11.5
Attentional 7.49 43.0 19.4 7.30
Our Work 6.24 40.6 17.0 6.35

Table 3: Perplexity on the test sets for the two translation di-

rections. Our work includes: bidirectional LSTM attentional

model combined with positional bias, Markov, local fertility,

and global fertility (pre-trained setting).

4.2 Experimental Results

The perplexity results of the neural models for the
two translation directions across the four language
pairs are presented in Table 3. In all cases, our work
achieves lower perplexities compared to the vanilla
attentional model and the encoder-decoder architec-
ture, owing to the linguistic constraints. We also
obtained similar patterns of improvements when de-
coding, using a greedy decoding strategy, as shown
in Table 4. The exception was for en→ru, where
the addition of the global fertility (in addition to the
other aligment features) was detrimental, resulting
in a decrease in BLEU score (5.94→5.26). This may
be due to highly noisy nature of the web text corpus
of Russian-English language pair, compared to the
much cleaner sources for the other language pairs.

Greedy decoding does not appear to be competi-
tive for neural models trained on small parallel cor-
pora, not reaching the level of a phrase-based base-
line (see Table 5). Despite this, however, these mod-
els still provide substantial gains when used for re-
ranking (as shown in Table 5) for translating into En-
glish from the other four languages. We compare re-
ranking settings using the log probabilities produced
by our model as additional features10 vs. using log
probabilities from the vanilla attentional model and
the encoder-decoder. The re-rankers based on our
model are significantly better than the rest for Chi-
nese and Estonian, and on par with the other for Rus-
sian and Romanian→English. In all cases our model
has performance at least 1 BLEU point better than
the baseline phrase-based system. It is worth not-

10We include two features: the normalised log-probability of
the translation, evaluated in both translation directions.

Lang. Pair Zh-En Ru-En Et-En Ro-En
Enc-Dec 17.4 3.63 12.5 21.2
Attentional 29.9 8.11 19.7 33.0
Our Work 31.56♠ 9.14♠ 20.44♠ 34.16♠

Lang. Pair En-Zh En-Ru En-Et En-Ro
Enc-Dec 14.6 2.08 7.97 16.6
Attentional 20.9 5.26 12.5 28.1
Our Work 23.45♠ 5.26 13.40♠ 30.07♠

Table 4: BLEU scores on the test sets for the two translation

directions, using greedy decoding. bold: Best performance, ♠:

Statistically significantly better than Attentional.

Lang. Pair Zh-En Ru-En Et-En Ro-En
Phrase-based 40.63 18.70 31.99 45.21
Enc-Dec 40.41 18.83 32.20 45.36
Attentional 41.16 19.79 32.78 46.83
Our Work 43.50♠ 19.73 33.26♠ 46.88

Table 5: BLEU scores on the test sets for re-ranking. bold:
Best performance, ♠: Statistically significantly better than At-

tentional.

ing that for Chinese-English, our re-ranker leads to
a substantial increase of almost 3 BLEU points.

5 Related Work

Kalchbrenner and Blunsom (2013) were the first to
propose a full neural model of translation, using a
convolutional network as the source encoder, fol-
lowed by an RNN decoder to generate the target
translation. This was extended in Sutskever et al.
(2014), who replaced the source encoder with an
RNN using a Long Short-Term Memory (LSTM)
and leveraged the last hidden RNN states as source
context for generating the output. Inspired by this,
Bahdanau et al. (2015) introduced the notion of “at-
tention” to the model, whereby the source context
can dynamically change during the decoding pro-
cess to attend to the most relevant parts of the source
sentence. Further, Luong et al. (2015) refined the at-
tention mechanism to be more local, by constraining
attention to a text span, whose words’ representa-
tions are averaged.

Similar in spirit to our work, recent research has
proposed different ways of leveraging the attention
history to incorporate alignment structural biases.
(Luong et al., 2015) made use of the attention vector
of the previous position when generating the atten-
tion vector for the next position. Feng et al. (2016)
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added another recurrent structure for the attention
mechanism to enhance its memorization capabilities
and capture long-range dependencies between the
attention vectors. Tu et al. (2016) proposed a cov-
erage vector to keep track of the attention history,
hence refining future attentions. Finally, Cheng et
al. (2015) proposed a similar agreement-based joint
training for bidirectional attention-based neural ma-
chine translation, and showed significant improve-
ments in BLEU for the large data French↔English
translation.

6 Conclusion

We have shown that the attentional model of transla-
tion does not capture many well known properties of
traditional word-based translation models, and pro-
posed several ways of imposing these as structural
biases on the model. We show improvements across
several challenging language pairs in a low-resource
setting, as well as in perplexity, translation and re-
ranking evaluations. In future work we intend to
investigate the model performance on larger-scale
datasets, and incorporate further linguistic informa-
tion, such as morphological representations.
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