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Summary

Research in the field of referring expression generation (REG) focuses
on how a computer may refer to objects. In many of the approaches ad-
vanced in this field, a domain of visible objects is implicit, and generating
human-like, natural-sounding expressions is an influential goal. In this
thesis, I address such constraints head-on, examining how people refer
to visible objects in the real world. Using previous work and the studies
from this thesis, I propose an algorithm that generates human-like ref-
erence to visible objects. Rather than introduce a general-purpose REG
algorithm, as is tradition, I address the sorts of properties that visual
domains in particular make available, and the ways that these must be
processed in order to be used in a referring expression algorithm. This
method uncovers several issues in generating human-like language that
have not been thoroughly studied before.

I focus on the properties of color, size, shape, and material,
and address the issues of algorithm determinism and how speaker varia-
tion may be generated; unique identification of objects and whether this
is an appropriate goal for generating human-like reference; atypicality
and the role it plays in reference; and multi-featured values for visual
attributes.

In Chapters 1 and 2, I discuss some background for this thesis, fo-
cusing on how the visual system works (Chapter 1) and what we can
learn from previous research on reference, including work in philosophy,
psychology, computational linguistics, and computer vision (Chapter 2).
In Chapter 3, I run an exploratory study on reference to visible objects,
discussing some aspects of initial reference that would be useful to cap-
ture and how structures for these phenomena may be represented in an
algorithm. In Chapter 4, I focus in on the property of size, detailing
a hand-written algorithm and a machine learning approach to generate
size modifiers. In Chapter 5, I examine the role that atypicality plays
in reference, using the properties of shape and material. In Chapter
6, I look briefly at what previous work in this thesis tells us about when
people use (and when they do not use) color modifiers. In Chapters 7



and 8, I introduce and extensively evaluate a referring expression gener-
ation algorithm that generates structures for initial reference to visible
objects using an ideal computer vision output.

Technical contributions from this thesis include (1) an algorithm
for generating size modifiers from features in a visual scene; and (2) a
referring expression generation algorithm that generates structures for
varied, human-like reference. The main ideas I hope to communicate in
this work are that description is an integral part of how people refer;
that generating non-deterministically helps to better capture human-
like reference; that referring expression generation may be improved
by modelling the domain of reference; that redefining values for visual
attributes as multi-dimensional rather than single-dimensional aids in
generating richer, more natural variation; that probabilistically gener-
ating descriptions based on prior property likelihoods and description
length can lead to human-like variation; that a knowledge base of what
is typical about objects may be used to guide more descriptive refer-
ence; and that approaches in a visual domain may be influenced by how
the visual system works, giving color and size a privileged status and
providing mechanisms for properties that are interconnected.
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Chapter 1

Introduction

How do people refer to objects? As a first pass, we can say that people refer to an object

by saying things about it. The next step is to figure out, what are the things?

This thesis narrows the problem by looking at reference to visible objects. Shiny round

beads, books wrapped in blue covers, thin pink sponges, brown ceramic bowls shaped like

a flower: Reference to all these objects and more is explored to discover what characterizes

initial reference to visible objects. I am particularly interested in verbal, conversational

reference; the kind that a person may utter when viewing a scene with another person

and discussing the objects. My findings are used to inform the design of a referring

expression generation algorithm that connects vision to language by describing visual

properties. I focus particularly on the visual properties size, shape, material, and

color, and examine what role these play in reference. I do not attempt to develop a

cognitive model of vision to language; rather, I use information from cognitive processes

to guide the generation of varied, human-like expressions.

Throughout this thesis, I examine the descriptive nature of initial verbal reference: What

do people tend to mention to a hearer when they identify an object in a set of visible

objects (a scene)? Are there commonalities underlying this reference when a hearer is

viewing the scene simultaneously with the speaker, versus when a hearer may have later

access to the description? Is it reasonable to assume that speakers identify an object by

producing descriptors that rule out all other competitor objects, or do we find evidence

that other factors – such as visual salience or object expectations – are at play?

The type of reference that I develop I will call an identifying description. This is initial,

exophoric reference to an object in a visual scene, produced by a speaker for a hearer
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(either present at the time of utterance or receiving the description later), with the

intent of directing the hearer’s attention to the referent object. This reference may arise

in spoken dialogue, or in typed descriptions; I implement a reference algorithm and

evaluate in both typed and spoken modalities.

Figure 1. Visible everyday objects.

This work therefore makes three primary contributions:

(1) It analyzes how people describe real world visible objects through psycholin-

guistic experiments and corpus analysis.

(2) It models what people describe about these objects.

(3) It evaluates the proposed model against several other models on several visual

corpora.

In this chapter, I lay the groundwork for the ideas and approaches that inform the thesis

as a whole, covering an introduction to human vision (Section 1.1), reference and referring

expression generation (Section 1.2), and summarizing relevant work in computer vision

(Section 1.3). Section 1.4 provides a guide to the overall layout of the thesis, with a short

summary of the content of each chapter.
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1.1. Vision

To understand reference in the visual world, let us first consider the visual system itself

(see Figures 2 and 3).

Figure 2. The vision system discriminates objects using color, luminance,
contrast, edges, shape, etc; these features have linguistic correlates that are
produced in visual description.
(Source: http://www.webexhibits.org/colorart/ganglion.html)

Free viewing of a scene is guided in part by the rods and cones in our eyes that respond

to light reflecting off objects. Upon fixating on an object, cone cells in the fovea respond

selectively for color, and this is passed to ganglion cells that use this information to detect

contrast, defining the object’s edges along with its colors and luminance.

This visual information captured in the eye travels through the optic nerve to the first

cortical visual area in the brain (primary visual cortex, or V1). Here, cells respond

selectively to edge orientation (Hubel & Wiesel, 1962; see Figure 4), and the size of the
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Figure 3. Originating occipitally, a ventral pathway (purple) runs to
the inferior temporal lobe and processes object properties such as color
and shape, while the dorsal pathway (green) projects to posterior parietal
areas, processing spatial attributes and movements.
(Source: http://commons.wikimedia.org/wiki/File:Ventral-dorsal_streams.svg)

Figure 4. Experiencing edge detectors (without the edges): Cells in the
visual system respond selectively to edges and shapes. You can experience
this effect directly in optical illusions where the visual system responds to
edges that are not there.

object is processed (Murray, Boyaci, & Kersten, 2006; Fang, Boyaci, Kersten, & Murray,

2008; Schwarzkopf, Song, & Rees, 2010). This feeds forward to areas that respond in

parallel to shape (Logothetis, Pauls, & Poggio, 1995; Riesenhuber & Poggio, 1999; Tarr

& Gauthier, 2000) and location (Haxby et al., 1991; Mishkin, Underleider, & Macko,

1983) (see Figure 3). Further areas of the visual system discriminate an object’s texture,

material, opacity, sheen, and other visual characteristics (cf. Kosslyn, 1994; Wolfe &

Myers, 2010; Anderson, 2011).

It is unsurprising that the properties the visual system perceives are properties that we

have language for. Color and size, for example, are processed relatively early by the visual

system; they are also the most common adjectives when referring to visible objects (this

is further detailed in Chapters 3 though 5).
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The connection between vision and language continues as our brain uses the perceived

visual features to find the object type. Particularly salient visual properties for this task

include size, shape (E. V. Clark, 1973; Landau, Smith, & Jones, 1998), and material

(Markman, 1989). Using these features to find the object type and assign an object

name requires generalizing what we see in a specific instance to a stored category label,

a function of the property similarity between the current context and what we have

previously seen (Kosslyn, 1994; Logothetis & Sheinberg, 1996).

Reference to visible objects is therefore brought about by the interaction between two

modalities: (1) a visual, spatial input modality that creates the perception of objects

as they exist in space, and (2) a language output modality that is affected by visual

structures to produce certain kinds of reference. In an automatic vision to language

system, visual and spatial input may be provided by a computer vision system, and I

discuss this connection further at the end of the chapter. In the next section, I focus on

the language aspect of this interaction, discussing what it means to refer, what this says

about the kinds of properties that will be mentioned, and how such visual characteristics

as those discussed above may be used to generate referring expressions for visible objects.

1.2. Reference

The object is a principal unit in early language learning, with the earliest vocabulary

items for children being nouns that name objects (Landau, 2001), primarily concrete

objects (Nelson, 1973; Caroll, 1999). As far back as Aristotle, nouns – particularly

referring nouns – have been noted for being different from, and conceptually more basic

than, the concepts referred to by verbs and prepositions (Aristotle, 335 BCE; Whorf,

1956; MacNamara, 1972). Nouns provide a way to communicate about the natural

world’s endless variety as distinct entities.

To begin understanding language generation as a whole, it is therefore reasonable to begin

with the basic building block of nouns; by developing robust models of what people pick
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Figure 5. One cube, Two cube, Big cube, Blue cube? Many speakers
would call the object on the right a big blue cube, although either big or
blue can clearly and uniquely identify the referent.

out when they refer to basic, concrete objects, we can create a solid base from which

to produce more complex linguistic structures. This thesis attempts to provide some

groundwork in this direction. Note I do not intend to build a cognitive model; rather, I

learn from what people do to develop models that can reflect their behavior.

To detail what people say when they refer, it is useful to know what reference is. Donnel-

lan (1966) proposes a distinction between referential and attributive descriptions. Ref-

erential descriptions, he proposes, are made to enable the audience to pick out whom

or what the person is talking about, while attributive descriptions are made to state

something about that thing. Searle (1969) argues that there is no significant difference

between the two uses; an alternative definition is that referring must either (a) contain

descriptive terms true uniquely of the object; (b) present the object demonstratively, or

(c) provide some combination of demonstrative presentation or description sufficient to

identify it alone. Appelt and Kronfeld (1987) establish a theory that an agent is refer-

ring when he has a mental representation of an object, and uses a noun phrase with an

intention of bringing a mental representation of the object to the hearer. Further details

about the philosophy of reference are provided in the Literature Review in Chapter 2.

These ideas on reference give rise to several issues explored in this thesis: How do we

account for underspecification, when speakers do not include enough information for the

hearer to uniquely identify the referent? When do overspecification and redundancy come

into play, when speakers include overlapping details of a referent (see Figure 5)?
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It is an open question whether it is possible to create an algorithm that generates nat-

uralistic reference for reference in general. This is because the form reference takes is

profoundly affected by modality, task, and audience. Reference in a dialogue is affected

by the focus of attention (H. H. Clark, Schreuder, & Buttrick, 1983; Beun & Cremers,

1998), and the mutual understanding of referents between interlocutors (Sacks & Sche-

gloff, 1979; Brennan & Clark, 1996). Reference that is spoken has different characteris-

tics from reference that is written (Chapanis, Parrish, Ochsman, & Weeks, 1977; Cohen,

1984), and reference that is produced in a collaborative task is different from reference

that is produced in isolation (Krauss & Weinheimer, 1967; H. H. Clark & Wilkes-Gibbs,

1986; H. H. Clark & Krych, 2004). A speaker will refer differently to an object depending

on whether he or sure can gesture towards it or manipulate it (H. H. Clark & Krych, 2004;

Bard, Hill, & Foster, 2008). Even when these aspects are controlled, different people will

refer differently to the same object (Reiter & Sripada, 2002; Mitchell, 2008).

1.2.1. Overview of Reference in this Thesis. The approach taken in this thesis

is to to learn how natural reference behaves end-to-end. To focus this task, I examine

reference that brings the attention of a hearer to a visible object for the first time in the

discourse. This reference may be characterized as descriptive and verbal or conversational

(see Chapters 3, 4, and 5) as opposed to literary (see Chapter 2). I do not intend to

make any claims about whether this kind of reference requires that speaker and hearer

be viewing the same object or gazing at the same scene at the moment of the speaker’s

utterance; I simply intend for the speaker to perceive visual properties of a target referent,

and convey these to a hearer who also has access to the visual scene (either simultaneously

or later). The hearer may use the description to successfully identify a referent, or else

may be confused and not able to identify the referent, and, if present with the speaker,

may interrupt or ask for clarification. This kind of reference is exophoric, introducing an

item into the discourse focus.
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The underlying assumption here, which has ramifications for the development of an

algorithm that generates referring expressions, is that the speaker acts egocentrically,

conveying visual properties that are salient to him or her, without focusing on whether

they rule out distractors. A key idea is that there are tendencies in initial reference to

visible objects whether the hearer is immediately present or not; these tendencies are

what I hope to capture in this thesis. The hearer may either already have the object in

the focus of attention, may simultaneously scan for the object as the speaker refers, or

may use the speaker’s full description to identify an object at a later point; the algorithm

generates property descriptors independently of the hearer. This does mean the hearer

will not have an effect on reference – my overall approach allows for a referring expression

to be built end-to-end; however, it may also be interrupted, e.g., by a hearer who has a

question, and I discuss this further in Chapter 7.

To generate human-like variation, the method I develop is also non-deterministic, gen-

erating properties with different likelihoods (Chapters 8 and 7). There is a preference

for certain kinds of expressions in human-produced reference (Chapters 3, 4, 5), and the

algorithm attempts to model these preferences using a stochastic function.

Throughout this thesis, I trace reference generation from an initial visual stimulus all

the way through to the initial descriptive reference to identify an object. This approach

allows me to define a clear context and specific goals, uncovering the detailed interplay

between visual features and the process of reference. The algorithm I introduce may

therefore be used to generate human-like reference to visible objects in particular, and

the reasoning processes it uses may or may not be extended to further domains, with

changes in the overall context clearly defined.

1.2.2. REG and NLG. This thesis fits within the broad research area of natural

language generation (NLG). NLG systems are concerned with how to produce linguistic

text – summaries, descriptions, etc. – from non-linguistic data – things like temperature

readings and timestamps. Example systems generate weather forecasts from readings of
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Text Planner ! Microplanner ! Surface Realiser
Figure 6. NLG pipeline architecture (after Reiter & Dale, 2000).

temperature, pressure, precipitation (Sripada, Reiter, & Davy, 2003) and summaries of

daily activities for children with difficulty speaking (Black, Waller, Reiter, Tintarev, &

Reddington, 2011).

In the traditional three-tiered model of language generation, text planning picks out what

is going to be talked about; microplanning associates this to linguistic structures; and

surface realization produces final utterances (see Figure 6). Similar three-tiered incre-

mental models have been suggested in psycholinguistic research on language generation

as well (Pechmann, 1989; Levelt, 1989).

A predominant research question within natural language generation systems is how best

to refer to the entities being discussed. How should a weather system first be introduced

(“a fast-moving cold front”), or a desired toy be selected (“the brown monkey”)? This

is the problem of referring expression generation, which generally takes place in the

microplanning step of natural language generation. This thesis focuses on this subtask

of referring expression generation (REG) in particular, teasing out details of reference in

a visual domain.

1.2.3. Description and Reference. Although there have been different views on

what reference is, all can roughly be generalized as allowing that when people refer, they

select specific entities known by the speaker, with the intention for a hearer to:

(1) identify the entity

(2) learn information about it

Proposed computational models for reference have tended to focus on (1) – how to

uniquely identify a referent so that it is distinguished from other confusable items in the

scene. This follows a view first outlined by Olson (1970), where reference is “the specifi-

cation of an intended referent relative to a set of alternatives.” In these approaches, the
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properties of the referent are compared against the properties of other items in the scene,

and those that differ are selected (using a variety of different methods; further details of

modern REG algorithms are available in Chapter 2 Section 2.2.3).

Choosing properties of the referent relative to a set of alternative items is a simplified

view of reference that has since evolved in the psycholinguistic world (H. H. Clark &

Bangerter, 2004). There are additional goals with each utterance in addition to unique

identification (Jordan & Walker, 2005; Appelt, 1985), leading to more descriptive refer-

ence. This includes intentional influences (Jordan, 2000), such as those with a commu-

nicative purpose (conveying mood, certainty, etc.), conceptual pacts (Brennan & Clark,

1996) to render agreement on an object between two speakers, and conceptualizations

or perspectives on the referent (H. H. Clark & Bangerter, 2004). When viewing a scene,

subjects will begin referring to objects before they have even begun scanning the alter-

natives (Pechmann, 1989) and visual characteristics of different objects will tend to “pop

out” without focusing on surrounding items (Treisman & Gelade, 1980). The idea that

the primary mechanism driving human-like reference is selecting properties relative to a

set of alternatives does not appear to be well-founded, at least in visual domains.

This thesis therefore attempts to propose a model of reference that brings in both (1)

and (2) above, looking at what information people convey about a referent in addition

to how a referent may be identified. Although there is a rich history of work focusing on

what people describe when they refer, a robust computational model for the generation

of descriptive initial references to everyday objects has not emerged. This thesis fills this

gap, building off of earlier philosophical, psycholinguistic, and computational work on

reference. Experiments are designed to further our understanding of reference to visible

objects (Chapters 3, 4, and 5), and from this work, the thesis proposes an algorithm for

generating natural-sounding identifying descriptions of a large set of real world objects

(Chapter 7).
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Examining reference to objects in a visual domain provides a straightforward extension of

the sorts of reference REG research already tends to consider. Examples in the literature

outline reference to objects, people, and animals that are perceptually available to both

speaker and hearer (Dale & Reiter, 1995; Krahmer, van Erk, & Verleg, 2003; van Deemter,

van der Sluis, & Gatt, 2006). Example referents may be referred to by their color, size,

type (“dog” or “cup”), whether or not they have a beard, etc. This work also contributes

to recent research examining naturalistic reference in visual domains explicitly (Kelleher,

Costello, & van Genabith, 2005; Viethen & Dale, 2010; Koolen, Goudbeek, & Krahmer,

2011).

1.2.4. Real-World Visible Objects. I focus specifically on reference to objects –

inanimate entities – as distinct from reference to people or animals. This is because the

brain has evolved to recognize and process representations of inanimate entities differently

from animate entities (Caramazza & Shelton, 1998), and so I suspect reference to animate

entities involves slightly different processes and may be better modeled with a separate

algorithm. The problem of generating natural reference is therefore pinpointed to the

specific problem of generating natural reference to visible, real world objects.

One of the difficulties in examining real objects is that objects can be incredibly complex.

Additional to the properties of color, size, and orientation, which have been isolated in

previous studies involving semantically transparent objects (van Deemter et al., 2006;

Viethen & Dale, 2008), visible real world objects exhibit the properties discussed in

Section 1.1, with different textures, materials, patterns, sheen, luminance, etc., and often

have parts exhibiting different values for such properties as well.

Using real world objects allows us to examine reference to the visual properties of objects

as they may appear in everyday life. However, I lose a fair amount of control by using

such objects, as they must be physically found and/or created (e.g., they are not from

pictures). However, I hope that this exercise helps us to gain insight on how reference in

visual scenes operates in the face of noisy, complex, real world objects.
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1.3. Computer Vision

An important part of the research in this thesis, particularly in working towards an

algorithm, is what the input is and what a scene model provides. It is useful when

studying the generation problem to keep the input hypothetical, but being realistic about

what the input may be and what kind of information it provides can help us to guide the

construction of our downstream generation algorithms. For a system that automatically

generates identifying descriptions of visible objects, automatic visual input is likely to be

provided by a computer vision system that provides representations of visual objects. It

therefore helps to look briefly at what computer vision can do, with an eye towards the

following task of generation.

A fact to be aware of in understanding the state of the art in computer vision is that in

an open domain, it basically does not work. For most images, computer vision can find

hats and cat faces and people in an image that to a human observer is just a picture of

a mountain. For the rest of the thesis, I am thus not focusing on computer vision; but

it is important to keep in mind to motivate our input representations. With more work,

we may be able to connect vision and the approaches discussed in this thesis directly.

Figure 7. Output of running several object classifiers on a novel image.

This is not to say that computer vision does not work well when some constraints are

in place. Object identification – when the system is told what kind of object to look

for – achieves relatively high accuracy (Dalal & Triggs, 2005). Object segmentation –
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when there is not too much clutter or lighting variation – can also work relatively well

(Friedland, Jantz, & Rojas, 2005).

Figure 8. Output of running an object classifier for a given object on a
novel image.

However, in unconstrained, novel situations, a computer vision system will tend not to

make sense of the world. Until the state of the art improves, a system that links vision to

language must rely heavily on further semantic knowledge to constrain what the vision

system sees.

1.3.1. The State of the Art in Computer Vision. Currently, vision techniques

detect objects in scenes by converting the pixels of an image into a large collection of

local feature vectors, storing histograms of color, texture, intensity, and edges. Some

approaches are cognitively motivated (Riesenhuber & Poggio, 1999; Itti & Koch, 2001),

taking into account changes in intensity, contrast, and orientation. Several approaches

to object detection are in use, with the most accurate systems finding key locations for

categorization using a difference-of-Gaussian function on points in the image (Lowe, 1999;

Dalal & Triggs, 2005).

A significant advance in computer vision related to this thesis is the idea of training

detectors for object attributes. Given a bounding box where an object is suspected to exist,

visual detectors may be trained for colors, materials, and parts (Farhadi, Endres, Hoiem,

& Forsyth, 2009), and initial results show color detectors to have reasonable accuracy

(Berg et al., 2011). Example computer vision output with attribute detections is shown
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stuff: sky .999
id: 1
atts: clear:0.432, blue:0.945

grey:0.853, white:0.501 ...
b. box: (1,1 440,141)

stuff: road .908
id: 2
atts: wooden:0.722 clear:0.020 ...
b. box: (1,236 188,94)

object: bus .307
id: 3
atts: black:0.872, red:0.244 ...
b. box: (38,38 366,293)

Figure 9. Example computer vision output with a bounding box around
the detected object, and attributes found within the bounding box. Values
correspond to scores from the vision detections.

in Figure 9. Here we see several kinds of visual feature sets used in the detections (stuff

and object), several detectors (grass, sky), attributes detected within the bounding box

(b. box) where the object is predicted to exist. Values here correspond to scores from the

detector for each object/stuff/attribute, and are not comparable across different items.

Further details on object and attribute detection are provided in Chapter 2, Section 2.4.

Having such information available suggests that vision may begin to be connected to lan-

guage at the level of the object, tying detected attributes and spatial relations computed

from the bounding boxes to their corresponding surface forms.

1.4. Thesis Outline

I focus on exophoric initial reference to visible objects – the first mention of the object

as it is introduced into discourse – and propose an algorithm that generates this kind

of reference. Expressions produced by the algorithm can be characterized as descriptive,

picking out an object in the visual scene by mentioning several of its properties. I

assume a hearer will have access to the speaker’s visual scene, and will use the speaker’s

descriptions to identify referents. Throughout the thesis, I focus on the attributes of
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size, shape, material, and color, looking at what kind of attribute is used when,

and how each is used; this helps to inform the design of the algorithm introduced at the

end. I do not examine spatial relations or part-whole relations in great depth, but both

are directly relevant and would immediately advance the work I discuss here.

Traditionally, to create an algorithm for the generation of reference, one considers a set

of different properties and develops ways to decide which to include in a final surface

string. This may be considered a breadth-based methodology, where many properties

are considered, but the details of how those properties are input to the algorithm are

left unspecified. Here, I begin creating an algorithm for the generation of naturalistic

reference by considering individual properties – size, shape, material, and color –

and trace how they may be realized based on a variety of different inputs and outputs.

This I will call a depth-based methodology.

This is a departure from previous approaches to the construction of an REG algorithm.

Instead of a more general-purpose algorithm, a small set of abstract semantic types are

mapped to a variety of surface forms. This allows us to understand the task of referring

expression generation at a fine-grained level, analyzing the specific characteristics of a

visual feature that need to be considered in order to generate reference similar to that

produced by people.

After a literature review in the next Chapter, I begin testing how people initially refer to

visible objects in an exploratory study with no hypotheses and a great number of visual

properties. From here, I suggest some basic ideas of the mechanisms at play and what

aspects of reference to examine further. I find that in particular, there is need for a model

for size.

In Chapter 4, I therefore introduce a connection between the visible dimensions of objects

and the kinds of size language people use to refer to them. Height and width of the target

object are compared to the rest of the objects in the scene within a function that returns

an appropriate size type, corresponding to surface forms like “big”, “fat”, or “short”.



Chapter 1.4 Page 16

Examining the size property in isolation provides a tractable problem to solve within

the larger problem of moving from visual input to natural language output. This makes

it possible to begin untangling a few of the complex and interacting features that affect

reference while minimizing conflating factors that may also affect reference, e.g., color.

In Chapter 5, I focus on the role of typicality in reference, and the visual attributes of

shape and material. This chapter explores how properties chosen to describe a referent

are selected both as a function of the surrounding context, as well as a function of the

expected or typical properties of referents. Chapter 6 looks briefly at color, examining

its prevalence throughout the studies in this thesis and considering the factors that may

affect whether or not color modifiers are included in a final description.

Findings from the previous chapters are implemented in a generation algorithm in Chap-

ter 7 that produces naturalistic, descriptive referring expressions given specifications of

objects’ visual features, using a stochastic process to capture speaker variation. The algo-

rithm is evaluated in Chapter 8, and in Chapter 9 I outline some of the main contributions

I hope to make with this thesis.

This thesis introduces an approach to referring expression generation for exophoric, initial

reference to visible objects. I aim to generate the wide variety of natural-sounding,

human-like expressions of this form. This kind of reference can be characterized as both

conversational and descriptive – that is, it is not constructed with the primary goal of

ruling out distractors, but rather, with the goal of including information that is visually

salient for the speaker. This project is framed within an engineering approach, but I

will use cognitive process to inform our decisions. I find that taking a verbal, descriptive

view of initial reference to visible objects captures what people appear to do better than

previous work on generating reference. I hope that this work helps in the development

of computational models that bridge the symbolic realm of language with the physical

realm of real world referents (Herzog & Wazinski, 1994; Roy & Reiter, 2005; Tanenhaus,

Spivey-Knowlton, Eberhard, & Sedivy, 1995).



Chapter 2

Literature Review

2.1. Introduction

One of the primary goals in this thesis is to discuss how to generate descriptive, human-

like referring expressions. This literature review provides a summary of background

research in areas that inform this goal, covering models of object perception, theories of

language production, and strategies in computer vision.

The chapter is split into three main parts. Section 2.2 focuses on referring expressions,

discussing work in the philosophy of reference in order to define what a referring ex-

pression is (Section 2.2.1); introducing some work in the psychology of reference and

language generation to discuss how referring works (Section 2.2.2); and detailing modern

frameworks for referring expression generation, or REG, to examine how referring expres-

sion generation has been modeled computationally (Section 2.2.3). Section 2.3 discusses

research in visual perception, which guide the referring expression generation algorithm

introduced in Chapter 7. Section 2.4 provides a brief overview of the state of the art

in computer vision, which further informs the design of the input to the algorithm in

Chapter 7.

2.2. Referring Expressions

When people identify an entity or set of entities in the discourse using an expression, they

are using a referring expression. “The brown bowl”, “me”, and “Bobby McGee” can all be

referring expressions. Referring expressions are a vital part of communication – a way

for people to communicate what things are in the natural world – and a critical building

block in the acquisition of language. Thus when speakers of mutually unintelligible
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languages begin communicating, they start building a pidgin language using referring

nouns (“me”, “you”, “money”), and when children first learn to communicate, their first

words are primarily nouns (Landau, 2001) that refer to concrete objects (Nelson, 1973;

Caroll, 1999).

To begin laying the foundation for a robust natural language generation system capable

of describing the visual world, it therefore seems reasonable to start at the level of nouns,

particularly focussing on definite descriptions; these are noun phrases of the form “the

. . . ”, as in “the brown bowl”. I first begin with a review of what a definite description

used referentially is and what people do when they refer.

2.2.1. Philosophy of Reference.

2.2.1.1. Early views on the philosophy of reference – Donnellan and Searle. In this

thesis, I take the view that initial reference to a visible object can be descriptive, picking

out properties that are interesting or visually salient rather than picking our properties

that uniquely distinguish a referent from other objects. This view is motivated in part

by rich philosophy on what a referring expression is, which I discuss briefly here.

The term referring expression can be traced to P. F. Strawson (1950), who uses the

term as a shortened form for the “referring use of expressions”. Strawson and subsequent

philosophical work suggests that you can do useful things describing what you believe to

be true of a referent, without necessarily capturing what is true. There is a separation

between the properties that are true of the referent, and the properties that may be

used to refer to the referent; the latter may sometimes be inaccurate, but still useful in

conveying a referent to a hearer.

Following this view, the definite descriptions used to describe an item – expressions of the

form “the so-and-so” – can be characterized as having a referential use or an attributive

use (Donnellan, 1966). A definite description used referentially is a description that

directs the audience’s attention to the entity that the speaker is talking about, as well

as states something about that person or thing. A definite description used attributively
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may have the same form, but the speaker does not have a particular object in mind.

Having a particular object in mind is a fundamental component of generating a referring

expression.

In this work, I take the view that describing a referent may be part of both types of

expressions; description is not limited to attributive phrases. In work on REG following

Donnellan, description is largely separated from referring (Kronfeld, 1986; Reiter & Dale,

1992). How people describe when they refer – picking properties of a referent because they

are salient or interesting in some way, rather than because they rule out other distractor

objects – has not received much attention. In this thesis, I take the view that referring

expressions can be produced via description, and what this means computationally.

An alternative view on what a referring expression is comes from John Searle (1969), who

rejects the referential/attributive distinction, and argues instead that there is a distinc-

tion between illocutionary acts (asserting, requesting) and propositional acts (reference,

predication). Propositional acts can only be performed in the course of performing some

illocutionary act; thus we can assert information about an entity as a vehicle to refer to

it. Searle proposes:

• Whatever is referred to must exist.

• If a predicate is true of an object it is true of anything identical with that object

regardless of what expressions are used to refer to that object.

• If a speaker refers to an object, then he identifies or is able on demand to identify

that object for the hearer apart from all other objects.

(Searle, 1969: 77–79)

This representation does not require that an initial referring expression uniquely identify

an object; rather, a speaker producing a referring expression is able on demand to identify

that object apart from all other objects. Searle uses the term identifying description in

describing this kind of referring expression. This is the kind of expression that work in

this thesis aims to better understand and model.
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To briefly summarize, early philosophy on referring expressions tells us that the umbrella

of referring expression includes (but is not limited to) expressions that:

(1) are definite descriptions

(2) are used to identify a referent

(3) have properties that may (or may not) be true of the intended referent

(4) may (or may not) contain description

(5) may (or may not) uniquely identify a referent

To denote the expressions that fall under this definition, I borrow Searle’s term identifying

description, and I will be using this definition in the work that follows.

2.2.1.2. Grice. Around the same time as Searle’s work, in 1967, H. P. Grice gave a

series of lectures at Harvard on the nature of conversation. His philosophy of language

did not focus on reference or referring expressions, but the maxims that he proposed to

underlie conversation have been extremely influential in studies on language production

and models for referring expression generation (particularly Dale & Reiter, 1995).

Grice was a philosopher and a linguist, and these lectures were a product of years of

research on the relationship between logic and natural language. Grice sought to represent

conversation and natural language in logical terms, and believed that the fundamental

processes underlying communication could be represented in logical form. Notes from

these lectures circulated for years, and in 1975 a journal published a portion of this

work in an article called “Logic and Conversation” (Grice, 1975). This article outlined

one of the basic ideas Grice had developed, the idea that conversation operates with

underlying expectations that can be characterized by four basic maxims. The maxims

have apparent violations in conversation, and our interpretations of the conversational

exchange are influenced by how we resolve a speaker’s utterance against these maxims.

The maxims have come to be known as the Gricean maxims, and are listed in Figure 1.

The maxims provide insight into the cooperative principle in conversation, explaining how

people may balance informativeness with brevity when they communicate. This work has
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Quantity:

1. Make your contribution as informative as is required.

2. Do not make your contribution more informative than is required.

Quality: Try to make your contribution one that is true.

1. Do not say what you believe to be false.

2. Do not say that for which you lack adequate evidence.

Relation: Be relevant.

Manner: Be perspicuous.

1. Avoid obscurity of expression.

2. Avoid ambiguity.

3. Be brief (avoid unnecessary prolixity).

4. Be orderly.
Figure 1. The Gricean Maxims.

been particularly influential in algorithmic approaches to REG (Section 2.2.3), and so

is discussed here. However, they are not used to inform the computational approaches

introduced in the later chapters of this thesis (at least not intentionally). As Grice writes,

I have stated my maxims as if this purpose were a maximally effective
exchange of information; this specification is, of course, too narrow.
(Grice, 1975: 58)

The maxims provide guidelines for how people should speak if they want to communicate

with optimal effectiveness, but not necessarily for how people tend to communicate.

The Gricean maxims may be understood as what listeners expect in some kinds of con-

versation, but it is clear that they are not what speakers generally do. Grice’s maxim of

quantity appears to be overridden by factors such as lexical availability and perceptual

salience (Brennan & Clark, 1996), the maxim of quality is flouted when people guess or

make ironic statements (Grice, 1975), and the maxim of manner does not account for

the fact that people include unnecessary prolixity (H. H. Clark & Wilkes-Gibbs, 1986)
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(see Section 2.2.2). The maxims are therefore not ideal as a model of how people natu-

rally generate referring expressions, although may be useful in later work on interpreting

referring expressions.

2.2.1.3. Recent views on the philosophy of reference – Appelt and Kronfeld. Philo-

sophical work in referring expression generation began to take on a more computational

framework with the thesis of Douglas Appelt (1981) and his subsequent work on the

Kamp system (Appelt, 1985), which sought to computationally model the different goals

at play when people communicate. Appelt saw that producing natural utterances re-

quires a powerful system capable of reasoning not only about the physical world, but

beliefs and intention of the communicants.

To begin defining what the problem of generating referring expressions is, and what

kinds of knowledge a system must have to generate them, Appelt proposed that object

reference may be broadly categorized under four types of concept activation actions when

a speaker utters a noun phrase for a hearer:

(1) A referent is mutually known by speaker and hearer, where reference picks out

that referent.

Example: Use the same wrench you used to unfasten the pump.

Category: Shared Concept Activation with Identification Intention (SI)

(2) A referent is not mutually known by speaker and hearer, where reference picks

out that referent.

Example: Get me the large wrench in my toolbox.

Category: Nonshared Concept Activation with Identification Intention (NSI)

(3) A referent is mutually known by speaker and hearer, where reference is not

intended to pick out a referent.

Example: The man who murdered Smith is insane.

Category: Shared Concept Activation with No Identification Intention

(4) A referent is not mutually known by speaker and hearer, where reference is not

intended to pick out the referent.
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Figure 2. Appelt’s 4-way reference distinction.

Example: I met an old friend from high school yesterday.

Category: Nonshared Concept Activation with No Identification Intention

(NSNI)

Expressions with Shared Concept Activation with No Identification Intention (SNI) may

be somewhat comparable to Donnellan’s attributive expressions, and expressions with

Identification Intention may include the identifying descriptions examined in this thesis.

Whether these identifying descriptions are Nonshared or Shared in Appelt’s sense is an

open question; for the reference I generate, I assume that speaker and hearer view the

same visual scene, although perhaps not simultaneously. It may be the case that a referent

is Shared if it is visible (or to become visible) to both speaker and hearer, or it may be

the case that a referent is Nonshared if the hearer has not yet identified a target object as

a possible referent. However, a clear commonality between the identifying descriptions

discussed in this thesis and in Appelt’s reference distinctions lies in the fact that the

speaker utters the expression with the intention of identifying it to a hearer; further the

reference is exophoric, introducing an item into the discourse focus.1

1It may also be said to be new as opposed to given.
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In 1986, Amichai Kronfeld proposed that the kinds of expressions discussed by Appelt

(with several more fine-grained distinctions) can be generated following a three-tiered

system. This is a precursor to modern referring expression generation within a natural

language generation pipeline, including a database that includes representations of ob-

jects, a planner that constructs strategies for carrying out referring intentions, and an

utterance generator that produces referring expressions.

Both Appelt and Kronfeld propose that an agent is referring when he has a mental

representation of what he believes to be a particular object, and he intends the hearer

to come to have a mental representation of the same object, at least in part through the

use of a noun phrase that is constructed to be a linguistic representation of the object

(Kronfeld, 1987; Appelt & Kronfeld, 1987). In a language generation system, this is

implemented as a set of object representations that may be either perceptual, discourse,

or functional. Relevant to this thesis, the perceptual representations are the agent’s

mental representations of objects that result from perceptual acts (e.g., looking).

It is not a far leap from this research to propose such a perceptual individuating set

be composed of visual properties that an agent believes to be true of a target object –

for example, <red, small>. Similar representations have been the basis of most work in

referring expression generation to follow. Important to Appelt and Kronfeld’s represen-

tation, echoing Strawson and Searle, but lacking in later computational approaches, an

individuating set is the result of an agent’s beliefs, not a mirror of what is actually the

case.

The philosophy of reference and referring expressions has therefore provided a relatively

clear picture of what a referring expression is (Section 2.2.1.1) and how it may be rep-

resented computationally (this section), providing the scaffolding from which to build a

referring expression algorithm. Before turning to details of modern REG algorithms and

what we may learn from them to construct an algorithm that generates more human-like

reference, it is useful to bolster these considerations by studying what people actually do
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when they refer. I turn to this issue in the following section, providing some background

in the psychology of reference relevant to visual domains.

2.2.2. Psychology of Reference. In this section, I focus on areas most important

for this thesis, examining the effect of modality on reference, in particular how reference

in a visual modality in particular behaves; and the cognitive processes in reference pro-

duction, specifically focusing on mental representations of objects and the incremental

and parallel processes proposed to underlie object naming.

2.2.2.1. Object Representations. To begin the construction of an algorithm for natural

reference, it is useful to develop a representation of the object before reference begins,

that is accessed during the referring generation process. One extremely influential view

in this regard concerns the mental representations of objects presented by Eleanor Rosch

and colleagues. Rosch argued that people categorize everyday objects by comparing a

given object against a ‘prototypical’ object within the same category. For example, chair

and radio may both be categorized as furniture, and chair is a more reasonable exemplar

of the furniture category than radio is. Rosch and Mervis (1975) showed that such natural

semantic categories can be represented as networks of overlapping attributes; members

of a category come to be viewed as prototypical of the category as a whole in proportion

to the extent to which they have attributes that overlap those of other members of

the category. Rosch et al. (1976) illustrated that there is one level of abstraction at

which the most basic category cuts are made, a category which they termed the basic

level. Basic level categories are those which are the most differentiated from one another,

and members within a category at this level possess significant numbers of attributes in

common and have similar shapes.

This suggests that the knowledge base in an REG algorithm capable of producing human-

like reference should include a data structure that lists typical properties of various

objects at the basic level, especially if typicality has an effect on reference. I return to

the hypothesis that typicality has an effect on reference in Chapter 5.
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Figure 3. Geometric properties underlying object naming (from Landau
and Jackendoff, 93: 221).

An alternative view on mental representations of objects is presented by Wu and Barsa-

lou (2009), who showed that participants construct perceptual simulations of objects

when generating properties for noun phrases. Participants produced large amounts of

information about background situations associated with objects, suggesting that mental

representations of objects are situated, bringing to mind past experiences that include the

object. The authors also found that participants instructed to produce feature listings

without an image created similar distributions of properties as participants instructed to

describe images, which provides some evidence that the conceptual representations used

by both groups were similar. From a computational perspective, this may be applied

using statistics about how objects were presented in prior contexts – e.g., using a corpus

containing text that describes situations involving objects – to establish the kinds of

properties that people tend to associate with objects, and ultimately refer to.

Further ideas about object representation are presented by Landau and Jackendoff (1993),

who discuss how a visible object may be cognitively represented during naming. Ana-

lyzing the geometric properties that underlie object nouns, the authors suggest that

intersecting axes define an object’s relation to space (see Figure 3). These are outlined

as follows:
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Generating axis: This is an object’s principal axis, and can be seen as running

through the top and bottom of the object.

Orienting axes: These are secondary and orthogonal to the generating axis and

to each other (corresponding to the front/back and side/side axes).

Directed axes: These differentiate between the two ends of each axis, marking

top/bottom and front/back.

(Landau and Jackendoff, 93: 221)

With these axes in place, the authors make a distinction between surface-type and

volume-type objects, suggesting that adjectives are used differently depending on which

category an object falls into. Surface-type objects are those that principally extend in

two dimensions (such as a record), while volume-type objects are those that extend in all

three (such as a box). The utilization of these two types to describe objects can be seen

in the fact that, for example, a record only needs to be wide to be called a big record

(not thick), while a box needs to be both wide and tall to be called a big cube (otherwise

it would just be called tall or wide).

Appropriate reference to parts of objects can be seen as stemming from these underlying

axial structures. For example, if an object is long and narrow, it has a horizontal gen-

erating axis that is longer than the other axes, and can thus be said to have ends; the

regions at the termination of the axis. This idea provides a way to represent the human

perception of objects, and the generation of referring expressions may benefit from in-

corporating these ideas of object properties. I focus on the role that the generating axis

and one of the orienting axes2 play in the generation of size modifiers for volume-type

objects in Chapter 4.

Psycholinguistic work on mental object representations therefore provide some evidence

for:

(1) A knowledge base of typical object properties

2The width or x-axis, running side/side.
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(2) A dimensional representation of the objects in the scene

Although I do not attempt to design a cognitive model, this provides some guidance on

the kinds of structures that may affect the kind of reference an algorithm can generate.

Both (1), typical object properties, and (2), represented as the height and width of

objects, are implemented in the final algorithm introduced in Chapter 7.

2.2.2.2. Referring in a Visual Modality. Language behaves differently in different sit-

uations and modalities, and this is why it is important to define the kind of reference

being modeled when proposing an algorithm that generates human-like output. Object

reference can vary as a function of beliefs, intentions, common ground, and the modality

in which it is occurring. Modality includes whether the language is in a dialogue or mono-

logue, face-to-face or over the telephone. Rubin (1980) classifies language along several

lines, including voice/print, ability of speaker and hearer to interact, spatial commonal-

ity, age, and mutual involvement in the discourse. Problems are solved twice as fast when

done through voice than when done through writing, even though subjects use twice as

many words when speaking than when typing (Chapanis et al., 1977). Written language

is syntactically more complex than spoken language, which tends to exhibit many false

starts, incomplete sentences, and hesitations (Hindle, 1983). Requests for the hearer to

identify referents of noun phrases dominate spoken instruction-giving discourse, but is

largely absent from keyboard discourse (Cohen, 1984). It is not enough to attempt to

generate “human-like” reference; spoken object reference to visible objects will not likely

be the same as written object reference in a narrative.

Some early ideas about the beliefs and intentions at play during spoken reference to visible

objects come from Clark et al. (1983), who establish the Principle of Optimal Design:

“The speaker designs his utterance in such a way that he has good reason to believe

that the addressees can readily and uniquely compute what he meant on the basis of the

utterance along with the rest of their common ground” (p. 246). This is a forerunner

to the Principle of Mutual Responsibility, discussed in Clark and Wilkes-Gibbs (1986)

below.
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The Principle of Optimal Design asserts the presence of a common ground between in-

terlocutors, which is based in part on perceptual evidence – what the interlocutors ex-

perienced or are jointly experiencing at the moment. This may lead to linguistic under-

specification of a referent, when speakers do not include enough properties for a hearer

to uniquely identify the referent based on the semantics of those properties alone, that

is still perfectly well understood in context. For example, if there are only a few stars

in the sky, and I am talking about one of them, or one of them is particularly bigger or

brighter than the rest, then the phrase “that star” may still identify the intended referent

to the person I am talking to.

The authors examined the effect of common ground in the interpretation of underspecified

reference in a visual saliency task. In this task, they elicited responses to two pictures

containing bunches of flowers. The pictures were identical except that one had the target

referent, a group of daffodils, appearing more vividly. Random students around campus

were asked, “How would you describe the color of this flower?” The authors compared

responses for the two pictures, and found that in the picture where the daffodils were

only slightly more prominent than the others, 3/20 of the participants gave the color of

the daffodils while 12/20 asked, “Which one?”. In the other picture, where the daffodils

were clearly more salient, 11/20 of the participants immediately gave the color of the

daffodils and only 5/20 asked which one was meant.

This study illustrates how visual saliency plays a key role in reference to visual objects

and how that reference is understood. Properties used to distinguish a referent may be

underspecified based on their semantics alone, but can create sufficiently distinguishing

descriptions if they denote particularly visually salient properties of the referent. For

color properties of objects in an image, this suggests that a system aiming to generate

human-like output should not use only the color value itself (e.g., yellow), but also the

color value’s visual salience based on its hue, saturation, and contrast within the scene

– and this is a direct link for an REG algorithm that accepts a computer vision input,
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using pixels in an image to determine which properties to select in order to create an

identifying description.

Following this work, Clark and Wilkes-Gibbs (1986) suggest that the “classical” analysis

of reference discussed in previous work (Zipf, 1935; Brown, 1958; Olson, 1970; Krauss &

Glucksberg, 1977) follows a literary model of definite reference, where speakers refer as if

writing to distant readers. This model predicts that every reference is (a) controlled by

the speaker alone (b) made with a standard (literary) noun phrase (c) that is as short as

possible and yet (d) specifies the referent uniquely in that context. Literary models of

reference may be well-suited for literary uses of language, such as novels, newspapers, and

letters, where speakers may play, edit, and rewrite their reference; as well as non-scripted

radio and television broadcasts, sermons, tape-recorded messages, etc. Such a literary

model informs the referring approach behind two of the most influential algorithms in

the field of REG, the Incremental Algorithm and the Graph-Based Algorithm discussed

in Section 2.2.3, and the kind of reference elicited to subjects in REG corpora such as

the GRE3D3 or TUNA corpora discussed in Chapter 8. This thesis questions whether

such a model can actually predict what people do.

A conversational or verbal model should look quite different. In conversation, unlike writ-

ing, speakers have limited time for planning and revision. The listener has to attend to,

hear, and try to understand an utterance at virtually the same time as it is being issued.

Listeners in conversation are not mute or invisible during conversation, and speakers

may alter what they say midcourse based on what addressees say and do. Understanding

the difference between reference produced with a speaker present vs. without, written

vs. spoken, is important if we wish an REG algorithm to be flexible enough to generate

initial human-like reference.

In this work, I demonstrate that speakers do not generally produce reference predicted

by the literary model at all; even in monologue settings (Chapter 3), reference is much

closer to the conversational or verbal model. Speakers produce reference that is not
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clear, reference that does not uniquely identify a referent, reference that is redundant,

and reference that is overspecified. Creating a referring algorithm with this in mind

(Chapter 7) leads us closer to generating human-like reference in visual settings (Chapter

8), even without an interlocutor. And using a conversational model as our starting point,

it should be easier to extend to dialogue in future work.

Two interlocutors in conversation follow a process of reference synchronization that Clark

and Wilkes-Gibbs call the Principle of Least Collaborative Effort. This principle predicts

a trade off between effort in producing initial noun phrases and the effort in refashioning,

with the goal being to minimize the amount of effort necessary for members of the dialogue

to both identify the referent and refer to it. Following this principle, reference to an entity

may be presented in installments, which minimizes the complexity of a first reference and

allows the hearer to present their understanding of the reference. Reference can therefore

be made with (a) nonstandard, nonliterary noun phrases, (b) with phrases the speaker

believes are not adequate in context, and (c) with devices that draw addressees into the

process. This occurs in non-literary description as well, even without an interlocutor

present (Chapter 3).

Somewhat paradoxically, speakers are frequently more informative than they need to be

and may describe what is salient rather than those features that will distinguish it from

its neighbors (Ford & Olson, 1975; Mangold & Pobel, 1988; Brennan & Clark, 1996;

Koolen et al., 2011); they are overspecified or redundant. This is especially clear in the

inclusion of color descriptors (Pechmann, 1989; Koolen et al., 2011). This tendency is

one of the motivations for calling the initial reference I aim to generate descriptive.

Beun and Cremers (1998) argue that such descriptive tendencies do not contradict the

Principle of Least Collaborative Effort (which they call “minimal cooperative effort”), but

rather shows that such a principle does not operate at the level of descriptive features,

but at the level of identification and speech acts. With this view, the principle makes

predictions about the kinds of properties people will use when describing objects and the
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contrast set against which a target referent will be compared. For property selection,

speakers will have a preference for using absolute features (like color) since these do

not require comparison processes; thus size and relative location expressions (“the

left block”, “the block next to the red one”) will be dispreferred. For the contrast set,

participants in a conversation will establish a focus space that enables speakers to use less

information than would be needed by taking the complete conversational domain into

account (a similar idea is also suggested by Grosz and Sidner (1990)). This focus space

includes a visual implicit focus, for objects that share features with or are physically close

to the one just mentioned, and objects with inherent salience because they stand out in

the context (e.g., the pop out effect of Treisman and Gelade (1980) discussed in Section

2.3). Although I do not find a preference for absolute properties over relative properties

in the studies (but rather, just a preference for color, e.g., Chapters 3 and 6), I do

find that using a focused contrast set of nearby objects of the same type leads to the

generation or naturalistic expressions in Chapters 4 and 8.

The complementary Principle of Mutual Responsibility in collaborative language use pre-

dicts that participants in a conversation try to establish, roughly by the initiation of each

new contribution, the mutual belief that the listeners have understood what the speaker

meant in the last utterance to a criterion sufficient for current purposes. It follows that

initial references are often provisional: when speakers present a reference, they do so as a

starting point to then work with their addressees to establish that it has been understood

(Brennan & Clark, 1996).

In literary uses of language, speakers (or writers) may adhere to a related Principle of

Distant Responsibility. This predicts that the speaker tries to make sure, roughly by

the initiation of each new contribution, that the addressees should have been able to un-

derstand his meaning in the last utterance to a criterion sufficient for current purposes.

This is clearly a mode of language use immediately applicable to work in referring expres-

sion generation that does not use a hearer model. Reference without a hearer is further

explored in Chapter 3, while reference with a hearer is explored in Chapter 5.
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Another important factor in work that aims to generate human-like reference to visible

objects is speaker variation. Furnas et al. (1987) found that the likelihood in their study

that any two people would use the same label conceptualizing an action in the same way

was 7-18%. In another study (Schober & Clark, 1989), pairs of people in conversation

referred to the same abstract geometric form variously as “the rice bag”, “the whale”,

“the complacent one”, “the stretched-out stop sign”, and “the baby in a straitjacket”.

Such speaker variation speaks to the kind of output that should be produced by an

algorithm aiming at natural reference: Varied, individualized reference. For different

speakers, or in different moments, the kind of expression that a person will produce will

be different; a naturalistic reference algorithm should therefore aim to produce several

possible expressions for a given referent.

2.2.2.3. The Production Process. Psycholinguistic models also provide some evidence

as to what people do when producing language. Such work may provide insight into

how to create referring outputs that otherwise would not be possible with existing REG

techniques.

An extremely influential view on how reference to visible objects proceeds in a visual

context is provided by Pechmann (1989). Before continuing, it is important to note that

the final results of this paper are limited to the results from seven participants, one of

whom had only eight usable responses, and so conclusions from this study should be

followed with caution.

Using eye-tracking, subjects were presented with a variety of objects and asked to name

one. This exercise showed that people begin producing descriptions of items before they

scan the entire scene, and in fact, describe the target object as they fixate on the other

objects in the scene. In this process, which the author calls incremental speech production,

the features necessary to distinguish an object are not formulated before the utterance

begins, but rather chosen as the utterance progresses. This is another motivation for

viewing the kind of human-like initial reference I aim to generate as being descriptive
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and conversational – properties are not chosen to optimally rule out other competitor

objects, but are chosen because they appear salient to the speaker as he or she refers,

without fully considering all the competitor objects.

The process of scanning the scene and not returning to fixate on the target referent is also

well known in work in visual processing, viewing behavior known as inhibition of return

(Posner & Cohen, 1984), and this may offer a further explanation of the participants’

behavior. It may be possible that participants are not viewing each additional object

in the scene in order to produce a contrastive modifier, but rather looking around the

scene as they produce an utterance that has already planned. Levelt and Meyer (2000)

show a related effect for object viewing and naming, where when referring to two objects

(e.g., “the dog and the baby”), a speaker’s attention stays on the first object just long

enough to retrieve its phonological code, and then the speaker continues viewing the

scene. This experiment differs from Pechmann’s because the subjects were told what

to say and described two objects rather than one, but it further supports the idea that

people will move to view a second object before they have fully linguistically encoded a

first object; whether or not people view other objects in the scene to contrast it with a

target referent is unclear.

Pechmann’s research has become one of the most influential psycholinguistic studies in

referring expression generation. However, there are elements of Pechmann’s work that

are often overlooked. To describe incremental speech production, Pechmann supports

a descriptive interpretation of initial reference, where properties are chosen not because

they contrast the referent item with the competitor objects, but because they emerge as

visually salient to the speaker. He writes:

. . . The speaker initially pays attention to the target object without seri-
ously considering the context. . . The speaker starts to articulate features
of the target object which are easily cognizable. One such feature is, for
instance, color, which can be determined without considering any other
contextual objects. In contrast, describing an object as either ‘small’ or
‘large’ required comparison processes. . . Such an incremental strategy of
object naming implies that the speaker does not absolutely intend to
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mention only distinguishing features of the target object while carefully
trying to avoid the incorporation of any non-distinguishing information
into his utterance. It is rather characteristic of such a strategy
that the speaker articulates features of the target before he
had determined whether they are distinguishing or not.
(Pechmann, 1989: 98. Boldface my own.)

Pechmann proposes that there are at least two distinct kinds of features at play in gen-

erating reference, those that are easily cognizable and those that require comparison

processes. Something like color may therefore be selected whether or not it rules out

any other items in the scene. The idea that not all properties are selected based on

contrast with other objects in the scene, and the distinction between properties that are

‘easily cognizable’ (color) and those that require ‘comparison properties’ (size/loca-

tion/orientation) is used in the algorithm in Chapter 7.

A hallmark of Pechmann’s proposed incremental process is that words in the utterance

are generated following the order in which they are cognized; the ordering of the words

in the utterance come directly from the order in which the attributes are processed.

Such a direct link between planning and speaking helps explains Pechmann’s finding

that utterances in the study often have color before size. However, the majority of

the utterances do not follow this order: People tended to produce size before color. I

return to what implications this may have for an algorithm in Chapter 7.

Another view of the production process is that the creation of the noun phrase proceeds

with different mechanisms operating in parallel. Schriefers (1992) suggests that in an

adjective-noun noun phrase, both words are accessed in parallel, with access to the noun

taking longer than the adjective. However, in many languages, setting features of the

adjective depends on retrieving features of the noun; e.g., in Dutch, where you must mark

the noun’s gender on the adjective. This suggests that adjectives are not uttered until

there is a lemma for the head noun, a specific meaning without phonological information

attached to it (Schriefers, 1993; Levelt & Meyer, 2000).

Ferreira and Swets (2002) found no evidence of incrementality while speakers produce

an utterance, but found evidence for such incrementality when there was added time
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pressure on generating the utterance. An important component of speech planning may

therefore be to determine whether the situation calls for “blurting out” the information,

or for more careful planning, and switching between the two modes are under the agent’s

control when producing an utterance.

These studies suggest that some aspects of the referring expression generation process

may operate in parallel, and that the language production system is capable of inter-

leaving planning processes and articulation. Language generation has a “horizontal” as

well as a “vertical” aspect (Levelt, 1989; Roelofs, 1998), and the extent to which serial

planning occurs is at least partly under speakers’ control; when incremental processes

are used depends on the intentions that motivate the speech.

Such a solution fits well within the approach to natural language generation articulated by

Levelt (1989) and Bock et al. (1994; 2001), whose models of language generation are very

similar to those currently used in natural language generation. In their proposed models,

the generation procedure is architecturally incremental, split between the three major

levels of the Message Component, where the speaker forms an idea of what s/he wishes

to say; the Grammatical Component, where lemmas are created; and the Phonological

Processing Component, where articulation orders are sent and the words are spoken with

the appropriate sounds. When a piece of information at a level becomes available, activity

in the next level is triggered. This overall incremental approach to language generation

allows that operations at each level can run in parallel; while one piece of information is

produced, so are other pieces of information.

Applying these ideas to the current thesis, different components of the referring expres-

sion planning process may occur in parallel, or run independently, and establishing such

mechanisms may lead to more human-like expressions. I discuss such an approach in

Chapter 7, positing that the process for producing the absolute property of color runs

in parallel to the processes for the relative properties of size, location, and orien-

tation. This distinction follows the idea of different processes for the two kinds of
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properties suggested by Pechmann (1989), and may help to generate the descriptive

reference this thesis explores.

2.2.3. Computational Approaches to Reference. In the previous sections, I

discussed ideas behind what a referring expression is and cognitive models of how ref-

erence works. In this section, I turn to how referring expression generation has been

implemented algorithmically. I focus especially on the Incremental Algorithm (Dale &

Reiter, 1995) and the Graph-Based Algorithm (Krahmer et al., 2003), two approaches to

REG that have gained considerable traction in the REG community, and which I evaluate

against in Chapter 8. A particularly important commonality between these algorithms,

and much of the work on REG that they have influenced, is the focus on unique identifi-

cation and operating deterministically. Both produce one referring expression (and only

one) and stop once a target item has been uniquely identified (or else fail).

As I have discussed, speakers are varied in their references, and the properties selected to

identify a referent may not uniquely identify an object (Section 2.2.2.2). In order to get

closer to the variation that humans have, the algorithm introduced in Chapter 7 produces

several referring expression non-deterministically, and does not focus on unique identifi-

cation, instead finishing as the likelihood of including the next attribute diminishes.

The same year as Pechmann’s watershed work discussed in the last section, Robert Dale

(1989) introduced the first explicit algorithm for the generation of referring expressions.

In this paper, Dale describes the referring expression generation mechanisms used in the

system epicure, and introduces what came to be known as the Full Brevity Algorithm.

This algorithm produces the minimal description of an object necessary to uniquely

identify it. That is, this algorithm produces sets with the fewest amount of attribute-

values necessary to distinguish an object in a group of objects.

This kind of reference is defined as a distinguishing description. This term is adopted in

most later work in the area. The definition Dale uses is as follows:
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Suppose that we have a set of entities U such that
U = {x1, x2, . . . x

n

}
and that we wish to distinguish one of these entities, x

i

, from all the
others. Suppose, also, that the domain includes a number of attributes
(a1, a2, and so on), and that each attribute has a number of permissible
values (v

n1, v
n2, and so on); and that each entity is described by a set of

attribute-value pairs. In order to distinguish x
i

from the other entities
in U, we need to find some set of attribute-value pairs which are together
true of x

i

, but of no other entity in U. This set of attribute-value pairs
constitutes a distinguishing description of x

i

with respect to the context
U.
(Dale, 89: 71)

In Dale’s terminology, the object being referred to is the intended referent, the group of

entities including the intended referent is the context set, and the group of entities not

including the intended referent is the contrast set.

The Full Brevity Algorithm in no way models what speakers actually do, as suggested

by the research discussed in Section 2.2.1; for example, redundancy and overspecification

are not allowed. It also has a high computational complexity, and is in the worst case

scenario NP-hard.

As a response to such problems, Reiter and Dale (1992) propose a new referring expres-

sion algorithm, called the Local Brevity Algorithm. This algorithm avoids some of the

computational complexity of the first, checking that each description component cannot

be replaced by a briefer description component without losing discriminatory power.

In this paper, referring expressions are defined as those expressions corresponding to Kro-

nfeld’s (1986) modal aspect of Donnellan’s attributive/referential distinction discussed in

Section 2.2.1. This is somewhat at odds with the vision of referring expressions adopted

through the rest of this thesis, and so deserves some discussion here. Following Kronfeld’s

(1986) work (and in much REG research to follow), the referential use of an expression

is presented as mutually exclusive from an attributive use. Reiter and Dale write: “We

consider a noun phrase to be referential if it is intended to identify the object it describes

to the hearer, and attributive if it is intended to communicate information about that
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object to the hearer.” This does not clearly include the possibility that a referring ex-

pression may be both intended to identify the referent as well as to attribute something

to the referent. But I argue that the referential use may include attribution (Donnellan,

1966, see Section 2.2.1.1); thus a referring expression can be intended to communicate

information as well as or in order to identify the referent. The view that attribution

and the closely related phenomenon of description may be a part of referring expression

generation is adopted throughout the thesis.

Work in the generation of referring expressions began to focus on generating human-like

references in the paper “Computational Interpretations of the Gricean Maxims in the

Generation of Referring Expressions” (Dale & Reiter, 1995), possibly the most cited pa-

per in work on the generation of referring expressions. In this paper, Dale and Reiter

introduce the Incremental Algorithm for generating distinguishing descriptions of refer-

ents. Drawing on the Gricean maxims (see Section 2.2.1.2) and the idea of incremental

speech production developed by Pechmann (1989, see Section 2.2.2.3), the Incremental

Algorithm aims to pick out a referent by incrementally analyzing the properties that are

true of the referent, and finishing when the intended referent has been uniquely identified.

The authors argue that such an algorithm is preferable to those algorithms introduced

in their earlier work, because it is less computationally complex and more reflective of

what humans actually do.

As in previous algorithms by the authors, the Incremental Algorithm operates on the

properties in the context set represented as attribute-value pairs. It proceeds by iterat-

ing through attributes in a predefined order, and for each attribute, it checks whether

specifying a value for that attribute would rule out at least one referent in the current

discourse that has not already been ruled out. If it does, that attribute is selected. The

algorithm then chooses a value for that attribute that is known to the user and that is

as basic as possible while ruling out the maximum number of referents possible. Once

this descriptor is selected, the algorithm adds the attribute-value to the distinguishing
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Figure 4. The Incremental Algorithm (Dale and Reiter, 1995: 22)

description. This process continues until there are no longer any referents confusable

with the intended referent. Pseudocode for this algorithm is given in Figure 4.

An interesting piece of this algorithm is the UserKnows function. This was not developed

in the paper, but it provides a way to account for the interlocutor’s model of the common

ground. The algorithm thus has a way of reasoning about shared knowledge. The

algorithm also calls to a BasicLevelValue function and a MoreSpecificValue function,

echoing Rosch and colleagues’ work (see Section 2.2.2) which are not defined as part of
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the algorithm but provide system-dependent information on the basic and more specific

forms for each selected attribute.

One idea to which I take particular exception in this thesis is that “computationally

simple interpretations of the Gricean maxims of conversational implicature should be

used” (234) to produce human-like REG. As I discussed in Section 2.2.2.2, speakers may

produce initial references that they believe to be inadequate in context (H. H. Clark &

Wilkes-Gibbs, 1986) and are frequently more informative than they need to be, including

description of what is salient rather than those features that will distinguish a target

object from its neighbors (Ford & Olson, 1975; Mangold & Pobel, 1988; Brennan &

Clark, 1996). This suggests something beyond straightforward application of the Gricean

maxims, and I do not use these maxims to guide the work in this thesis.

An alternative to the incremental approach is provided by Krahmer et al. (2003), who

cast referring expression generation as a graph-based problem. The authors formalize a

scene (consisting of a set of objects with various properties and relations) as a labeled

directed graph and describe content selection as a subgraph construction problem. Using

a graph-based approach allows for better generation of relational expressions, referring

expressions that include references to other objects.

Pseudocode for this approach is provided in Figure 5. Assuming a scene graph G =

<V
G

,E
G

> is given, the algorithm systematically tries all relevant subgraphs H of the

scene graph G by starting with the subgraph containing only the vertex v (the tar-

get object) and expanding it recursively by trying to add edges from G that are ad-

jacent to the subgraph H constructed up to that point. This set of adjacent edges is

denoted G.neighbors(H). The algorithm returns the cheapest distinguishing subgraph H

that refers to v, if such a distinguishing graph exists; otherwise it returns the undefined

null graph ?.
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Figure 5. Pseudocode for the main function in the graph-based approach
(makeReferringExpression) and the subgraph construction function
(findGraph).

Figure 6. Example scene for the Graph-Based Approach.

Using this method, referring expressions are constructed based on the kind of graph that

can be placed over a larger graph available from the knowledge base. Arcs between refer-

ents correspond to relations, such as next to and left of, and concentric circles represent

arcs that stem from and return to the same referent, representing descriptors of that

referent (see Figures 6 and 7). Costs for each circle dictate the order in which descriptors

are chosen, where those with the least cost are chosen first. In this way, distinguishing

descriptions for referents can be created by following a path to the referent.
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Figure 7. Example graph for the scene in Figure 6.

Since the publication of the Dale and Reiter (1995) paper, many steps have been made to-

wards advancing the Incremental Algorithm’s scope. Approaches to the generation of re-

ferring expressions have used the Incremental Algorithm to build reference to sets (Stone,

2000; van Deemter, 2000), generate more complex kinds of modifiers (van Deemter, 2000,

2002; Gardent, 2002; Kelleher et al., 2005), and include pointing gestures (Krahmer &

van der Sluis, 2003). The Graph-Based approach has also been somewhat improved upon

in recent years, with researchers proposing different methods for assigning costs to the

edges in the graph in order to approximate human redundancy (Viethen, Dale, Krahmer,

Theune, & Touset, 2008; Theune, Koolen, Krahmer, & Wubben, 2011) and pointing

gestures (van der Sluis & Krahmer, 2005).

Work specifically useful for visual domains using an incremental framework comes from

van Deemter (2000, 2006) and Kelleher and colleagues (2005; 2006; 2009). Van Deemter

(2000) makes a distinction between absolute properties, properties that are inherent to

the noun, and gradable properties, properties that can apply to an object to a greater of

lesser degree (e.g., small, large). Van Deemter (2006) explores how absolute measurement

values for the intended referent can be used to generate size-denoting adjectives based
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Figure 8. Visual salience weighting equation from Kelleher et al. (2005).

on the contrast set. In Chapter 4, I continue in van Deemter’s footsteps, examining

how to generate size-denoting modifiers in particular (a main component of descriptive

visual expressions), but expand the kinds of size language we can generate, and suggest

a standalone approach that can be plugged into several different kinds of algorithms.

The related problem of generating language sensitive to the visual salience of the objects

has been examined in depth by Kelleher and colleagues, who have developed models for

salience – both visual and linguistic – that play a role in structuring visually situated

discourse. The visual salience of an object is approximated as a function of its centrality

and its size, using the weight of the pixels that compose it. A pixel is weighted using the

equation shown in Figure 8 (Kelleher et al., 2005), where P is the distance between the

pixel and the image center and M is the maximum distance between the image center

and the image border. An object’s visual saliency is then the sum of the pixel weights

that compose it, normalized by the overall maximum summed pixel weight ascribed to

an object in the scene.

Using visual salience scores, Kelleher et al. (2006) tackle the problem of defining the

contrast set in a visual domain. The authors propose a dynamic model that orders

objects in the scene by their visual saliency. Given a hierarchy of spatial relations ordered

by cognitive load, their generation approach iterates through candidate landmarks in

descending visual salience order, and for each, iterates through a hierarchy of spatial

relations. For each relation that may be applied to the candidate landmark, a new

contrast set of distractor landmarks is created, and the basic Incremental Algorithm

can then be used to distinguish the target landmark from the distractor landmarks.

Kelleher et al. (2009) refine such an approach further, accounting for the influence of
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other objects on the semantics of spatial relations as a function of the objects’ visual

salience and proximity to the target object.

Throughout the thesis, I focus on properties that apply to the referent alone, and do not

explore properties such as relative spatial relations that relate the referent to another

object. Kelleher et al.’s models are therefore quite complementary to the ideas discussed

through the rest of this thesis, and joining Kelleher’s approach to visual salience and

spatial relations with the algorithm introduced in Chapter 7 offers an opportunity for

immediate improvement in generating natural language in visual scenes.

It is useful to take a step back at this point and again examine how we may improve the

naturalness of the expressions an algorithm can generate in light of the state of the art in

REG and the psycholinguistic research discussed in Section 2.2.2. Given the phenomena

of under- and overspecification (H. H. Clark et al., 1983; H. H. Clark & Wilkes-Gibbs,

1986), the descriptive tendencies in initial reference (Ford & Olson, 1975; Furnas et al.,

1987; Schober & Clark, 1989; Brennan & Clark, 1996; Koolen et al., 2011) the fact

that when viewing a scene, subjects will begin referring to objects before they have even

begun scanning the alternatives (Pechmann, 1989), that visual characteristics of different

objects will tend to “pop out” without a focus on surrounding items (Treisman & Gelade,

1980) and that speech may be “blurted out” without more careful planning (Ferreira &

Swets, 2002), one way to improve the generation of human-like initial expressions is to

switch the focus from generating uniquely identifying referring expressions by selecting

properties that rule out other items to generating descriptive referring expressions that

include salient visual properties. A similar philosophy on moving away from unique

identification by ruling out other items has been proposed by Siddharthan and McKeown

(2005), who generate noun phrases based on distributional similarity of collocations rather

than discriminatory power; and by Siddharthan, Nenkova, and McKeown (2011), who

learn a model for generating references by focusing on global salience and familiarity to

the reader. There has not been a great amount of work on description within referring
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expression generation, but notable exceptions include Jordan and Walker (2005) and

Hervás and Finlayson (2010). I will discuss these approaches briefly.

Jordan and Walker use machine learning to determine the content of referring expressions,

which allows many features to be used – conceptual pact features as well as visual features

– to decide the expression to generate. The idea is not to focus on properties that

uniquely distinguish the referent, but to learn from a corpus of what people tend to

do. Hervás and Finlayson (2010) define descriptive referring expressions as those that

provide additional information not required for distinction. The authors contend that

descriptive referring expressions are those that (a) unambiguously identify the intended

referent and (b) contain a constituent unnecessary for identifying the referent. They

present a corpus analysis in which approximately one-fifth of the referring expressions

in news and narrative text are descriptive according to their definition. However, inter-

annotator agreement on the descriptive referring expressions is low (Cohen’s  below 0.7),

which speaks to the difficulty in separating identification from description in reference,

suggesting that the distinction may not be very clear-cut.

In the next section, I focus on how people perceive objects. I examine visual perception

with the hope that the processes underlying visual perception can be extended and joined

with the processes underlying referring expression generation discussed above. This would

lead to a model of referring expression generation for visible objects that, because it

borrows from our understanding of how people see and speak about objects, may lead to

more human-like referring expression generation.

2.3. Vision

To advance an algorithm capable of generating natural reference to objects presented

visually, it is useful to understand the details of object perception, and how people

may view a scene as they refer. This may inform the kinds of phenomena we want to

account for in an algorithm. Research in this area also suggests models for representing
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object perception, which when combined with the psycholinguistic models for mental

representations of objects, provide a powerful basis for developing the structures an

algorithm should analyze to produce human-like object reference.

In an initial glance, the visual system forms a spatial representation of the outside world

that is rich enough to grasp the meaning of the scene, recognizing a few objects and

other salient information in the image before attention is focused on a single object; this

representation is known as the “gist” of the scene (Oliva, 2005). When fixating on an

object, our eyes are aimed towards informative regions, even during the casual inspection

of pictures (Mackworth & Morandi, 1967). This suggests that processing and rejection

(what to focus on and what not to) must be mediated by the scene’s overall gist as well

as information from peripheral vision as we scan the scene. The whole display receives

parallel processing within each fixation (Treisman & Gelade, 1980), with color and spatial

frequency properties guiding our attention intelligently (Wolfe & Myers, 2010).

When we fixate on an object, Mishkin et al. (1983) show that there are two distinct

cortical visual systems affecting our perception:

• The temporal cortex is involved in recognizing what objects look like (the ventral

or “what” pathway).

• The parietal cortex determines where they are located (the dorsal “where” path-

way).

Originating occipitally, the ventral pathway runs to the inferior temporal lobe and pro-

cesses object properties such as color and shape, while the dorsal pathway projects

to posterior parietal areas and processes spatial attributes and movements. The dor-

sal pathway processes locations, sizes, distances, orientations, and spatial properties in

three-dimensional space, while the ventral pathway detects edges, regions of common

color, texture, and geometric properties (Kosslyn, 1994). Neurons in the ventral path-

way are view-tuned, preferentially active for specific views of objects. Such neurons act

like blurred templates, with tolerance for small object rotations, and this preference is
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preserved over large changes in size and position (Logothetis et al., 1995), which may be

facilitated by the separation between the two pathways.

When viewing objects in a scene, property recognition from these pathways precedes

object recognition. In a seminal study, Treisman and Gelade (1980) find that people

perceive properties of scenes in parallel, and these then recombine in the brain to give the

sense of whole objects. As such, identifying a target object requires scanning the scene

only to take in the properties, the target object becoming clear once these properties

are integrated. In an object finding task, a parallel search of properties is followed by

serial visual fixations on the more limited set of possible targets until the true target

is found. Properties which are noticed simultaneously and in parallel are suspected to

be orientation, color, brightness, movement, and spatial frequency. Connecting vision to

language, this fits well with the parallel planning processes suggested in work on object

naming (Schriefers, 1992, 1993) and language generation (Levelt, 1989; Roelofs, 1998;

Levelt & Meyer, 2000). Together, these studies suggest that proposing an algorithm that

first analyzes simple properties like color and size in parallel (rather than serially or

incrementally) may lead to the generation of more natural referring expressions.

A possible computational model of the visual representation of objects is proposed by

Glasgow and Papadias (1992), who suggest representing objects as 3D and hierarchical

with a corresponding object description. An object is stored as a structured, descriptive,

deep representation that contains all the relevant information about it; it is a description

of the object. This fits in well with the idea of a stored object prototype that lists typical

object properties (Rosch et al., 1976) and an object description that lists situations in

which the same type object has been used before (Wu & Barsalou, 2009). Following Glas-

gow and Papadias and connecting this with the work of Landau and Jackendoff (1993),

such an object description may be accessed along with a visual object representation that

depicts the space that the object takes up, and may be used to retrieve information such

as size and spatial relations between parts. Representing such aspects of the object depic-

tively avoids the combinatorial explosion that would result from needing to explicitly list
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them, and provides an implementation of the visual system’s ability to store prototypical

shapes and exemplar shapes (Kosslyn, 1994).

With these structures in place, a system can make predictions about where people look

during free-viewing, and relatedly, what they may mention. For example, including

Mackworth and Morandi’s (1967) finding that people look to informative regions of an

image, you may see a suitcase, access its prototypical and exemplar shapes and parts

and think, “there will be a handle at the top”; and then look to its top (Kosslyn, 1994).

If the handle is not there, you may call the object “the suitcase without the handle”.

Vision research therefore suggests some of the same ideas on mental object representations

and parallel processing found in the psycholinguistic work discussed in Section 2.2.2.

These complementary areas of research suggest that human reference may be affected by

stored object prototypes (Rosch et al., 1976) and exemplars (Wu & Barsalou, 2009) which

include property-based information for objects (Glasgow & Papadias, 1992; Kosslyn,

1994), and that the analysis of some properties may occur in parallel before an object is

named (Treisman & Gelade, 1980; Mishkin et al., 1983; Schriefers, 1992; Levelt & Meyer,

2000). To implement these ideas in a computational framework, the stored knowledge

of an object’s typical properties can be represented in a knowledge base that is accessed

during object description, and the properties accessed in the ventral stream (like color)

may be run in parallel to the properties accessed in the dorsal stream (like size). These

approaches are implemented in an algorithm in Chapter 7, and the algorithm is evaluated

in Chapter 8.

2.4. Computer Vision

In developing a system that generates reference to visible objects, it is useful to define

where your input comes from, and what it provides. For a system that can automatically

recognize objects and describe them, automatic recognition is most plausibly provided

by computer vision. That is, an expected front-end for the REG work discussed in this
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Figure 9. ReCaptcha is used on websites to separate computers from
people. Users are asked to type the letters they see; computer vision tech-
niques at this point cannot figure out what the images say, while people
can.

thesis is a visual front-end that uses computer vision. I therefore develop my approach

in this thesis in light of where I expect this research to go, connecting to an automatic

visual input that is visible to both speaker and hearer. Below, I provide a summary of

the state of the art of computer vision, and what it makes available for an NLG system.

I do not get into great detail about the mechanics of computer vision, but instead, how

computer vision breaks apart a scene and what information it aims to gain from this,

focusing on what is most relevant for referring expression generation.

An important thing for computational linguists to understand about computer vision

is that it basically does not work. Consider the idea behind reCaptcha: words we can

recognize relatively easily, despite changes in shading, color, and deformations, are im-

possible to detect automatically (see Figure 9). Creating a system the uses automatically

retrieved visual input is not useful because the input is generally quite poor. Another

approach is to design models that work with gold-standard visual input; the kinds of

things computer vision is aiming to be able to do. In this section, I touch on some of

these goals.

Objects that computer vision systems currently aim to detect include cars (Savarese &

Fei-Fei, 2007), faces (Epshtein & Ullman, 2007), pedestrians (Dalal & Triggs, 2005), and

household objects (Deng et al., 2009). Object recognition is difficult in part because

there are so many interacting factors that are not constant across images. This includes

variation in pose/orientation/viewpoint (the angles of the objects and the angles from

which they are photographed); clutter (how many things are in the scene); occlusion
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(objects in front of other objects); lighting (different amounts of darkness and light);

shape; and size.

Approaches to object recognition include classification (Dalal & Triggs, 2005) and tem-

plate matching (Biederman, 1987; Epshtein & Ullman, 2007; Su, Sun, Fei-Fei, & Savarese,

2009). There has also been progress on visual-perception based features (Itti & Koch,

2001; Serre, Wolf, & Poggio, 2005), but these generally underperform classification-based

models. Current models often use overall context, or the “gist” of the scene (Rabinovich,

Vedaldi, Galleguillos, Wiewiora, & Belongie, 2007; Oliva & Torralba, 2007), to guide

object recognition. Recent research has also focused on creating detectors for action or

pose, and these are beginning to work when developed for specific objects; for example,

creating a RidingHorse detector or a PersonSittingInChair detector (Rogez, Ri-

han, Ramalingam, Orrite, & Torr, 2008; Grabner, Gall, & Gool, 2011; Desai & Ramanan,

2012), although these are not yet suitable for large-scale detection.

Some on the most influential early work on computer vision comes from Irving Biederman

(1987), who suggested recognizing objects by their components. The basic idea in this

work is that there are a small number of geometric components that constitute the

primitive elements of the object recognition system (like letters to form words). The

ability to recognize a set of generalized shapes, or geons, would aid in recognizing objects

without absolute measurements, at different orientations, sizes, modest degradations and

partial occlusion.

The stages in object perception that Biederman accounts for include:

(1) Edge extraction

(2) Detection of nonaccidental3 properties, and parsing at regions of concavity

(3) Determination of components

(4) Matching of components to object representations

3“Nonaccidental” properties are those properties that are unlikely to be a consequence of an accident
of viewpoint. For example, a flat figure rotated 90� along the z-axis will appear to be a line segment,
and this is an accidental property.
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More recent models focus on geometry rather than on defining constituent elements

(Lowe, 1999). Objects are modeled as a set of points, with relative locations between each.

There is debate in the field over how to model location, how to represent appearance,

whether the representation should be sparse or dense (e.g., pixels or regions) and how

to handle occlusion and clutter. These approaches generally do not work well, however,

due to lack of reliable methods for low-level and mid-level vision (material, sheen, etc.),

as well as lack of data.

Some methods inspired by human vision include work by Itti and Koch (2001), who,

usefully for this thesis, examine not only the interplay of object perception and language

(or, more broadly in this paper, the interplay between object perception and any given

task, which may be language generation), but also how this interaction may be modeled

computationally. The authors suggest that the perceptual saliency of stimuli depend on

the surrounding context, and that scene understanding and object recognition strongly

constrain the selection of attended locations. A saliency map can be constructed based on

those things that are visually salient independent of the task, which operates in parallel

with a control mechanism that guides attention towards regions based on the task.

Reference to objects may therefore be brought about in this framework by the interplay

of bottom-up, salient features and top-down, task-dependent control related to the need

to identify the object. Together, these cues direct attention to locations in the scene and

influence what sort of reference is generated about it.

Newer methods have started relying less on learning from human vision and intuitions

about visual perception, and more on machine learning and classification. In these mod-

els, images are partitioned into a set of overlapping windows, and the classifier makes a

decision at each window whether or not it contains the target object. A series of clas-

sifiers can then be used to give each data point in the image a label with an associated

weight. For example, Felzenszwalb et al. (2010) build cascade classifiers from part-based

deformable models. Dalal and Triggs (2005) use grids of histograms of oriented gradients
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Figure 10. Example classification for the presence of a person using His-
tograms of Oriented Gradients. Image from Dalal and Triggs (2005).

(HOG) over different regions within a linear SVM. The models are considerably more

robust to pose variation.

In Felzenszwalb’s (2010) method, a star-structured model is used to consider all possible

locations of a “root” object part. For each possible object root, the approach finds the

best configuration of the remaining parts. The placement of each part is represented by

its degree of displacement from its ideal location relative to the root. The score of an

object configuration is then the sum of the scores of the parts at their locations minus

deformation costs associated with the part displacements. The models are used to find the

highest-scoring configuration, which may be specified as the coordinates encompassing

the area of the configuration. Scores using such a method are illustrated in the computer

vision output/NLG input shown in Chapter 1.

In Dalal and Triggs’ (2005) method, an input image is first normalized for gamma/color,

and then edge orientation gradients are computed using Gaussian smoothing. Each pixel

casts a weighted vote for an edge orientation histogram channel based on the orientation

of the gradient in which it is a part, and the votes are accumulated into orientation bins

over local spatial regions. Detection windows are then tiled over the image, and in each

an SVM classifier is used to decide whether there is or is not a pedestrian. Figure 10

illustrates this process, showing an example image and its weighted gradients.
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Once an object has been located, it is possible to detect properties where the object is

thought to exist. Farhadi et al. (2009) find that they can detect several values for shape,

material, and parts. Their method uses color, texture, HOG descriptors, and edges

calculated for the pixels in the image in a linear SVM to classify whether something

is “round”, “3D boxy”, whether it has a “head”, “ear”, etc., and whether it is made of

“plastic” or “cloth”. These classifications return a score computed by the SVM. As with

many things in computer vision, it often does not work. However, detecting a set of basic

colors – red, orange, yellow, green, blue, purple, black, brown – works quite well using the

same approach (Berg et al., 2011). To my knowledge, finding values for relative properties

that require understanding the three-dimensional space represented in the image, such

as size and object orientation, has received less attention in computer vision.

The work discussed in this section illustrates that computer vision aims to detect objects,

and returns the locations where they are likely to exist. Within this space, different

absolute visual properties, like color, shape and material (but not size!) may be

found. Input to an NLG system from a computer vision system therefore may include

the height/width and pixel locations where the object is likely to exist in the image, and

the different absolute properties that may be applied to it. Each is associated to a score

that is relative to the recognition method used and the object or object property that is

being classified.

2.5. Summary

In this chapter, I have reviewed previous work in the philosophy of reference, the psychol-

ogy of reference, computational approaches to reference, object perception, and computer

vision, pointing out commonalities between complementary representations advanced in

each of these fields and the role they play in later work in the thesis. This review has

provided historical information about the problem I address in this thesis as well as in-

formation about the kind of knowledge an algorithm should have access to in order to

generate human-like reference to objects, as well as the kinds of features in the visual
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scene that it could analyze, how these may be represented, and what kind of output

it could generate. Many of these ideas are built on and expanded in the algorithm in

Chapter 7.

To summarize, early philosophy on referring expressions tells us that the umbrella term

of referring expression includes (but is not limited to) expressions that:

(1) are definite descriptions

(2) are used to identify a referent

(3) have properties that may (or may not) be true of the intended referent

(4) may (or may not) contain description

(5) may (or may not) uniquely identify a referent

To denote the expressions that fall under this definition, I borrow Searle’s term identifying

description (Searle, 1969) and I will be using this definition in the work that follows.

In an REG algorithm that generates human-like reference to visible objects, the formal

structure from which the identifying description is constructed is a set of perceptual

properties that an agent believes to be true of a target object (Appelt & Kronfeld, 1987;

Kosslyn, 1994; Dale & Reiter, 1995; Krahmer et al., 2003), the result of an agent’s beliefs

and not a mirror of what is actually the case (Strawson, 1950; Searle, 1969; Appelt &

Kronfeld, 1987). The algorithm requires a knowledge base of typical object properties

(Rosch et al., 1976; Wu & Barsalou, 2009) and a dimensional representation of objects in

the scene, providing, for example, height and width information (Glasgow & Papadias,

1992; Landau & Jackendoff, 1993). The analysis of some properties may occur in parallel

(Treisman & Gelade, 1980; Schriefers, 1992; Levelt & Meyer, 2000), with color analyzed

differently from size (Pechmann, 1989), location, and orientation (Mishkin et al.,

1983). Input provided by a computer vision front-end may provide labels for detected

objects, the approximate location where the object is found, values for different absolute

visual properties like color, shape, and material, and may be used to extract the

height and width of the area where the object is located.
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Given the phenomena of under- and overspecification (H. H. Clark et al., 1983; H. H. Clark

& Wilkes-Gibbs, 1986), the descriptive tendencies in initial reference (Ford & Olson, 1975;

Furnas et al., 1987; Schober & Clark, 1989; Brennan & Clark, 1996; Koolen et al., 2011)

the fact that when viewing a scene, subjects will begin referring to objects before they

have even begun scanning the alternatives (Pechmann, 1989), that visual characteris-

tics of different objects will tend to “pop out” without a focus on surrounding items

(Treisman & Gelade, 1980) and that speech may be “blurted out” without more careful

planning (Ferreira & Swets, 2002), one way to improve the generation of human-like

initial expressions is to switch the focus from generating uniquely identifying referring

expressions by selecting properties that rule out other items to generating descriptive

referring expressions that include salient visual properties such as color and size.

In the following chapters, I turn to experiments that isolate specific visual properties of

the scene that this literature review suggests are particularly important in object viewing

and naming, including color and size, and examining the effect that typicality of shape

and material has on reference. I draw generalizations from each study that may be

applied to an algorithm that generates human-like reference, and evaluate this algorithm

in Chapter 8. But first, I run an initial, exploratory experiment to understand first-

hand what people do when referring in visual scenes and to begin characterizing their

behavior specifically for an algorithm that generates initial reference to visible objects.

This experiment is detailed in the next chapter, Chapter 3.



Chapter 3

Exploring Reference to Visible Objects: Initial Findings

To begin understanding how reference to objects works in a visual domain, it is useful to

run an open-ended, exploratory study that examines very generally what people do. To

this end, I introduce an experiment where people refer to craft objects, physical manifes-

tations of visible properties. Craft objects are designed to vary visual characteristics –

color, size, shape, texture, sheen, etc. – and this is basically their only function:

to be visually rich. These objects therefore provide an interesting starting point to begin

learning what people do as they refer. Some example objects are shown in Figure 1.

This study attempts to provide information about reference on a number of different

dimensions. First, the study is conducted in-person, using real-world objects. This

design invites referential phenomena that may not have been previously observed in

Figure 1. Example craft supplies.
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Figure 2. What is the contrast set for the computer on the right?

REG research, which tends to use simpler domains. Second, the referring expressions are

produced orally rather than typed out. This allows access to reference as it is generated,

without the participants revising and so potentially obscuring information about their

reference. Third, I use a relatively complicated task, where participants must explain how

to use pieces to put together a picture of a face. The fact that I am looking at reference is

not made explicit, which lessens any experimental effects caused by subjects guessing the

purpose of the study. This approach also situates reference within a larger task, which

may draw out aspects of reference not usually seen in experiments that elicit reference

in isolation. Fourth, the objects used display a variety of different properties: texture,

material, color, size along several dimensions, etc. This brings the feature set closer

to those features that people interact with every day.
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As I have discussed in the previous chapters, one of the goals in this thesis is to understand

how people generate referring expressions beyond the literary model (H. H. Clark &

Wilkes-Gibbs, 1986) (see Chapter 2 for a further review of what this means). That is,

this thesis removes the assumption that initial reference will be made with a standard

(literary) noun phrase, that is as short as possible and yet specifies the referent uniquely

in that context. In this study, reference may follow the traditional literary model, or it

may not: The monologue instruction scenario offers a chance to better understand the

phenomena at play during a single individual’s referring expression generation, without

the prior assumption of a literary model. This helps us guide hypotheses for specific

phenomena in a speaker’s initial reference for the experiment in Chapter 4 and in Chapter

5, where an interlocutor is present.

3.1. Motivation

Much research in REG focuses on generation from a solitary agent, referring to an item for

the first time. There are exceptions, including work by Heeman and Hirst (1995), who

modeled some aspects of collaborative referring expression generation by approaching

the process as a series of interacting goals; the GREC challenges (Belz, Kow, Viethen,

& Gatt, 2008), which sought to generate appropriate references to an entity in a context

over several sentences; and experiments by Goudbeek and Krahmer (2012), who propose a

model for referring expression generation that uses earlier references from the interaction.

But for a large swath of REG research, reference generation does not take into account

an interlocutor or a prior context. Influential algorithms in REG such as the Incremental

Algorithm (Dale & Reiter, 1995) and the Graph-Based Algorithm (Krahmer et al., 2003)

produce one-shot referring expressions to uniquely identify a referent, following the tradi-

tional literary model of reference (H. H. Clark & Wilkes-Gibbs, 1986). Studying reference

to real objects in a monologue instruction task therefore provides information about ref-

erence that is immediately applicable to much of the work on referring expression to

date.
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The fact that much of our knowledge about how human reference behaves utilizes psy-

cholinguistic work on reference to visible objects suggests an obvious starting point for

generating human-like reference: generating reference to visible objects. A system that

generates such reference would be useful to provide image captions, conversation in an

assistive device, or descriptions from a mobile robot. This approach is also well within

the spirit of most work in REG; examples when introducing an REG algorithm often

illustrate reference to objects, people, and animals that are perceptually available and

physically situated in a group of competitor items (Dale & Haddock, 1991; Dale & Re-

iter, 1995; Krahmer & Theune, 2002; Krahmer et al., 2003; Areces, Koller, & Striegnitz,

2008), and several algorithms have worked to generate reference within visual domains

explicitly (Kelleher et al., 2005; van der Sluis & Krahmer, 2005).

Given a visual domain, it is useful to examine the assumptions behind traditional, general-

purpose REG and how these are borne out within the visual domain specifically. One

clear difficulty can be found in nearly all published REG algorithms, which assume a

predefined scene model listing the properties of the contrast set and the target object

(Dale & Haddock, 1991; Dale & Reiter, 1995; Gardent, 2002; Krahmer et al., 2003;

Areces et al., 2008). This includes, for example, values for the objects’ color, size,

location, etc. REG algorithms also tend to assume a clearly defined contrast set, the

set of objects against which the target object may be contrasted.

But for a system whose goal is human-like reference using visual input, such assumptions

are unrealistic. If input to the system is a computer vision front-end providing informa-

tion about the visual scene, the information about properties that require comparison

processes, such as size and relative location (location relative to other objects), is

not provided; instead, a vision system returns heights (size along a y-axis), widths (size

along an x-axis), and approximate locations of objects within an image (see Chapter 2

Section 2.4). The contrast set is not defined in a complex visual domain (see Figure 2),

and should be constructed as a smaller, focused subset of the objects in the scene (Beun

& Cremers, 1998; Krahmer & Theune, 2002). To process novel visual input, we must
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develop a referring approach where the locations of objects in the scene, along with their

heights and widths, are used to construct scene models dynamically.

It is therefore instructive to begin characterizing the structures at play when people refer

to visible real world objects. I follow in steps similar to those taken by Kelleher et

al. (2005), seeking to model properties of the visual scene in an algorithm that generates

natural, human-like reference. I diverge from prior work by proposing an algorithm that

specifically generates reference for real world objects, focusing on how to model human-

like reference to the kinds of objects that may be recognized in an image of a room. In

later chapters, following some of the findings in this initial study, I address several of the

assumptions discussed above, introducing an algorithm that produces a size modifier

type from the measurements of objects in the scene (Chapter 4), and using subsets of

same-type objects to define the contrast set rather than all items in the scene (Chapters

4 and 8).

3.2. Introduction

This experiment looks at reference to craft items by asking subjects to describe how to

recreate pictures of faces using crafts on a board. There are at least two major factors

at play in this study: picking out objects, and talking about the face as a whole. In this

work, I examine the initial references to pick out objects from the board; later references

within the construction of the face are not analyzed.

This study is intended to be exploratory, designed with the following, basic idea: people

will initially refer to visible objects using visual properties; this may not follow a literary

model of reference, even in a monologue setting. Beyond that, I do not test specific

hypotheses; I use this study to better understand how visual properties are used to

shape our hypotheses in later work. As such, I utilize objects with a variety of visual

properties (shape, texture, sheen, etc) beyond the more commonly used properties of

color and size (Jordan & Walker, 2005; van Deemter et al., 2006; Viethen et al., 2008).
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Because I am using objects intended for art projects with a large amount of variation, I

expect that the language in this study may be more artistic or “flowery” than language

in other domains. I also expect that since conversation is the usual site of language use,

a monologue reference task is somewhat unusual, which may affect how well participants

perform. We know humans do well at tasks that they practice regularly and get feedback

on; while most linguistic tasks satisfy these conditions, monologue reference does not for

most people. On the other hand, a monologue reference task sheds light on referring

expression generation as it is currently approached, specifically within a highly complex

visual domain, and removes the interacting factor of another speaker. This offers a

starting point from which to look at further, more controlled aspects of reference.

The study reveals several interesting properties of reference that have received little atten-

tion in the field. One of the most remarkable is how people chose to refer to the objects,

which can be best characterized as description. This phenomenon was also noted in dia-

logue by Clark and Wilkes-Gibbs (1986), and falls well within our understanding of how

people visualize and talk about objects in a scene (see Chapter 2). Rather than introduc-

ing objects by uniquely identifying them with a minimal set of properties, participants

tended to overspecify the object they intended, including detailed information about the

objects’ parts and analogies to other things that the object is most like. This suggests

that people select distinguishing properties not just as a function of their discriminatory

power (how many objects they rule out) or a linear preference order (selecting properties

one-by-one from a list of preferred properties), but by how visually salient they are within

the scene, and how they compare to stored representations of similar objects. Similar

indications have also been found in previous work in vision (cf. Treisman and Gelade

(1980)) and cognitive models of object recognition (Rosch and Mervis (1975); Rosch et

al. (1976); Wu and Barsalou (2009)).

Other aspects of reference found in this study that have not yet been addressed in REG

include the use of part-whole modularity, size comparisons across three dimensions, and

analogies. These phenomena are interrelated, and may be possible to represent in a
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computational framework. I also find that the object type – corresponding to the

object’s head noun in REG algorithms – may often correspond to another property,

particularly shape or material. This has also been found in psycholinguistic research

on object naming (Markman, 1989; Landau & Jackendoff, 1993).

In the next section, I describe the study. In Section 3.4, I analyze the results and discuss

what they tell us about natural reference. In Section 3.5, I draw on the results and

cognitive models of object recognition to begin building the framework for a referring

expression algorithm that generates naturalistic reference to objects in a visual scene. In

Section 3.7, I offer concluding remarks and outline areas for further study.

3.3. Method

3.3.1. Subjects. The subjects were 20 residents of Aberdeen, Scotland, and in-

cluded undergraduates, graduates, and professionals. All were native speakers of Eng-

lish, had normal or corrected vision, and had no other known visual issues (such as

color-blindness). Subjects were paid for their participation. Two recordings were left out

of the analysis: one participant’s session was not fully recorded due to a software error,

and one participant did not pick out many objects in each face and so was not included.

The final set of participants included 18 people, 10 female and 8 male.

3.3.2. Materials. A board was prepared with 51 craft objects. The objects were

chosen from various craft sets, and included pom-poms, pipe-cleaners, beads, and feathers

(see Table 1). The motley group of objects had different colors, textures, shapes, patterns,

and were made of different materials. Similar objects were grouped together on the board,

with a label placed underneath. This was done to control the head noun used in each

reference. The objects were used to make up 5 different craft “face” pictures. Subjects

sat at a desk facing the board and the stack of pictures. A picture of the board is shown

in Figure 3 and the faces that subjects described are shown in Figure 4. An annotated

board is shown in Figure 5, and annotated faces are available in Appendix A.
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14 foam shapes 2 large red hearts t3,t6/A1,A5
2 small red hearts A2,A4 2 small neon green hearts t4,t5
2 small blue hearts t2,t7/B7,B9 1 small green heart A3
1 green triangle C10 1 red circle C7
1 red square C6 1 red rectangle t12
1 white rectangle B11
11 beads 4 large round wooden beads A6/C11-C14/D5
2 small white plastic beads B4,B5 2 brown patterned beads t1,t8
1 gold patterned bead t11 1 shiny gold patterned heart D4
1 red patterned heart D6
9 pom poms 2 big green pom-poms A9/C8,C9
2 small neon green pom-poms t9,t10 2 small silver pom-poms B2,B3
1 small metallic green pom-pom A7 1 large white pom-pom D2
1 medium white pom-pom D3
8 pipe cleaners 1 gold pipe-cleaner D10
1 gold pipe-cleaner in half B1 1 silver pipe-cleaner A10
1 circular neon yellow soft pipe-cleaner A11 1 neon orange puffy pipe-cleaner B12
1 grey puffy pipe-cleaner C15/D1 1 purple/yellow striped pipe-cleaner t13
1 brown/grey striped pipe-cleaner A8
5 feathers 2 purple feathers C2,C4/D9
2 red feathers C1,C5 1 yellow feather C3
3 ribbons 1 gold sequined wavy ribbon B6
1 silver wavy ribbon B10/D7 1 small silver wavy ribbon A12/D8
1 star 1 gold star B8

Table 1. Board items with annotation labels. Letters correspond to the
face the item is used in. Items of the same type where only one is used in
the face (e.g., 4 large round wooden beads) are given a single label (e.g.,
A6).

Subjects were recorded on a head-mounted microphone, which fed directly into a lap-

top placed on the left of the desk. The open-source audio-recording program Audacity

(Mazzoni, 2010) was used to record the audio signal and export it to wave format.

3.3.3. Procedure. Subjects were told to give instructions on how to construct each

face using the craft supplies on the board (the instructions given to the participants is

available in Appendix B). They were instructed to be clear enough for a listener to be

able to reconstruct each face using the same craft objects as shown in the pictures. We

instructed participants to use the same craft objects as shown to make it clear that we
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Figure 3. Object board.

desired specific objects. A pilot study revealed that the original instructions left some

subjects spending an inordinate amount of time on the exact placement of each piece,

and so in subjects were additionally told that each face should take “a couple” of minutes,

and that the instructions should be as clear as possible for a listener to use the same

objects in reconstructing the pictures without being “overly concerned” with the details

of exactly how each piece is angled in relation to the other.

Subjects were first given a practice face to describe, trial face t in Figure 4. This face was

the same face for all subjects. The subjects were then allowed to voice any concerns or

ask questions, but the experimenter only repeated portions of the original instructions;

no new information was given. The subject could then proceed to the next four faces,

which were in a random order for each subject. A transcript of a single face from a

session is provided in Figure 6.
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trial face (t)

A B

C D

Figure 4. Faces used in study.

3.3.4. Analysis. The recordings of each monologue were transcribed (by me alone),

including disfluencies, and each face section (“eyes”, “chin”, etc.) was marked. First

reference to items on the board were annotated with their corresponding item numbers,
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Figure 5. Object board with annotations. Letters correspond to the face
the item is used in.

yielding 722 references.1 Initial references to single objects were extracted, creating a

final data set with 522 references to single objects.2 I do not examine reference to parts

of the face, but reference to pick out objects from the board.

There are two issues that arose in annotating the data. One concerns the use of definite

versus indefinite determiners (“the” versus “a”) in the noun phrases used to pick out the

referents, and the other concerns the distinction between referring to an object type (any

one of its kind will do) and referring to an object token (one specific object).

1This corpus is available at http://www.m-mitchell.com/corpora/craft_corpus/.
2Originally published as 505 references – one referent was missed due to a notation error.
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3.3.4.1. Definite/Indefinite Distinction. Initial references to objects on the craft board

are indefinite in about half of the data, beginning with the determiner “a” rather than

“the”. 41% (213/522) begin with the indefinite determiner and 41% begin with the defi-

nite determiner (212/522).

It deserves some consideration whether the indefinite noun phrases should be regarded

as referring expressions. Referring expressions are defined as definite (Strawson, 1950;

Donnellan, 1966; Dale & Haddock, 1991; Dale & Reiter, 1995; Krahmer & Theune,

2002), and for noun phrases this is indicated by the presence of the definite determiner

“the”. Dale and Haddock (1991) write: “If we have a distinguishing description, a definite

determiner can be used, since the intended referent is described uniquely in context.”

Linguistic tradition is that “ [unique identifiability] is both necessary and sufficient for

appropriate use of the definite article the” (Gundel et al. 1993: 277). However, I find

that intended referents are described uniquely, in context, using indefinite determiners as

well as definite. For example, the gold ribbon (item B6) is referred to as both “the gold

ribbon” and “a gold ribbon”. This is true despite the fact that subjects were told to give

instructions for someone to use the same objects, with the same board in front of them

(see Appendix B).

It makes sense that initial reference to some objects contains an indefinite determiner

because initial reference tends to be marked by an indefinite determiner, serving to

introduce the referent into the discourse. Although the task of REG is generally construed

as one of producing initial definite reference, the fact that initial reference is usually

indefinite – and the related issue that subsequent definite reference to the object will

tend to be reduced descriptions (Krahmer & Theune, 2002) – has not received attention

in most REG algorithms.

The reason that some subjects use an indefinite determiner may be due to the fact that

this is a monologue setting: Because the hypothetical listener cannot see the board at

the time that the subject is giving instructions, the use of the indefinite article serves to
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introduce the object into the common ground (cf. H. H. Clark and Wilkes-Gibbs (1986);

Horton and Keysar (1996); Bard et al. (2000)). Because subjects use both kinds of articles

(both “a” and “the”) for the same objects when they initially refer to them, and I am

interested in understanding what kinds of properties people pick out in initial reference,

I do not make a distinction between the two forms. I analyze both as initial reference

to visible objects, informing the kind of reference I aim to model in this thesis; whether

the subset of expressions that use the indefinite determiner are rightly called referring

expressions or not is noted for future work.

3.3.4.2. Type/Token Distinction. The indefinite/definite distinction is especially strik-

ing in references to one object of several that are of the same type. For example, the

wooden beads (see Figure 3) are virtually identical. When a craft face involved a wooden

bead (for example, Face D in Figure 4), subjects regularly used the indefinite determiner.

In these cases, subjects did not appear to be making a unique reference to a single ob-

ject token, but rather a reference to an object type – instructing listeners to pick up “a

wooden bead”, any one would do. This can be interpreted as doing one of two things: (1)

failing to uniquely identify a single object token or (2) succeeding in uniquely identifying

a single object type. For many references, it is unclear if the reference is underspecified

or picking out an object token, for example, the phrase “a small green heart” is used to

refer to the darker small green heart in the set of small green hearts (object A3). As

above, I include all initial references in the data set, and note the issue for future work.

3.4. Results

I annotated each reference for the properties used to pick out the referent. For ex-

ample, “the red feather” was annotated as containing the <attribute:value> pairs

<color:red, type:feather>. Discerning properties from the modifiers used in reference

is generally straightforward, and all of the references produced may be partially decon-

structed using such properties. Table 1 shows the frequency of each attribute annotated

in this corpus, with example values. Color is a predominant attribute, followed by size,
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<chin> Okay so this face again um this face has um uh for the chin, it uses (D10 a gold

pipe-cleaner in a V shape) where the bottom of the V is the chin. </chin>

<mouth> The mouth is made up of (D9 a purple feather). And the mouth is slightly
squint, um as if the the person is smiling or even smirking. So this this smile is almost off
to one side. </mouth>

<nose> The nose is uh (D5 a wooden bead, a medium-sized wooden bead with a hole in

the center). </nose>

<eyes> And the eyes are made of (D2,D3 white pom-poms), em just uh em evenly spaced
in the center of the face. </eyes>

<forehead> Em it’s see the person’s em top of the person’s head is made out of (D1
another, thicker pipe-cleaner that’s uh a grey color, it’s kind of uh a knotted blue-type

pipe-cleaner). So that that acts as the top of the person’s head. </forehead>

<hair> And down the side of the person’s face, there are (D7,D8 two ribbons) on each
side. (D7,D8 And those are silver ribbons). Um and they just hang down the side of the
face and they join up the the grey pipe-cleaner and the top um of the person’s head to
the to the chin and then hang down either side of the chin. </hair>

<ears> And the person’s ears are made up of (D4,D6 two beads, which are um love-

heart-shaped beads), where the points of the love-hearts are facing outwards. And those
are just placed um around same em same em horizontal line as the nose of the person’s
face is. </ears>

Figure 6. Excerpt transcript, face D.

then material and shape/form. Words denoting both shape and material often

appear as the head noun, represented in the table as type/shape and type/material.

Using sets of properties to distinguish referents is nothing new in REG. Algorithms for

the generation of referring expressions commonly use this as a starting point, proposing

that properties are organized in some linear order (Dale & Reiter, 1995) or weighted

order (Krahmer et al., 2003) as input. However, there is evidence that more is at play.

Examples of referring expressions current REG algorithms cannot produce from the visual

information available on the craft board are listed in Table 4.

3.4.1. From Dialogue to Monologue: How Speakers Introduce Referents.

Because much of the influential psycholinguistic work on referring examines reference

with an interlocutor (Krauss & Glucksberg, 1969; H. H. Clark et al., 1983; H. H. Clark

& Wilkes-Gibbs, 1986; Beun & Cremers, 1998; Bard et al., 2000; Brennan & Clark,

1996; Bard et al., 2008), it is useful to check if the kinds of referential phenomena noted
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Attribute Frequency Example
color 594 red, green, silver, purple, yellow
size 192 big, medium, small, short, thick, long
shape/form 156 heart, circle, ball, square, sphere, bent, twisty
type/material 94 foam piece
type/shape 89 heart, square, circle, rectangle
material 73 foam, wooden, tinsel, plastic, bronze
sheen 22 sparkly, glitter, shiny, luminescent
texture 16 fluffy, fuzzy, furry
orientation 12 upside-down, horizontal
pattern 3 striped, (with a) pattern
location 1 “at the bottom of the. . . presentation”
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Table 2. Craft Corpus attribute frequencies.

in dialogue applies to monologue. If there are similar tendencies, then we have some

support that the generalizations of what people do when referring in dialogue applies to

what people do when referring in monologue.

Clark and Wilkes-Gibbs (1986) (Tangram Data) identify six types of noun phrases that

introduce a referent into dialogue. Of these types, four do not include an interjection

from the interlocutor. I do not provide an extensive analysis of this data, but it is worth

noting that all four types appear in monologue as well. Several of these involve the speech
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stream, and how the uttered phrase fits into separate intonation contours, or tone groups.

Examples are below.

(1) Elementary noun phrase: The most basic form, usually stated in one tone

group.

Tangram Data Example: The guy leaning against the tree.

Craft Data Example: The yellow pipe-cleaner that’s in a circle.

(2) Episodic noun phrase: Uttered in two or more easily distinguished episodes

or tone groups.

Tangram Data Example: The goofy guy that’s falling over. . . with his leg

kicked up.

Craft Data Example: Your silver ribbon that’s like a twisty S-shape. . . but

it’s in a straight line.

(3) Provisional noun phrase: A noun phrase that is at first underspecified and

immediately expanded without prompting.

Tangram Data Example: The one that doesn’t look like anything. It’s

kind of like the tree?

Craft Data Example: The smaller pom-pom. It’s the uh the white one.

(4) Dummy noun phrase: Stand-in phrase until a better phrase comes, e.g.,

whatchamacallit.

Tangram Data Example: Not found.

Craft Data Example: A piece of uh I don’t know.

Also frequently reported for dialogue, underspecification and overspecification/redun-

dancy are common. Speakers do not include enough information to uniquely distinguish

the referent; they also include more information than is necessary to uniquely distinguish

the referent. The extra information provided can either be completely redundant – one

adjective rules out exactly the same set of distractor objects as another adjective – or
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more generally overspecified, including an adjective that is made unnecessary for unique

identification by another included adjective. Examples are listed in Table 3.

Label Expression Note Reference
Type

C15 the pipe-cleaner Unclear which is meant. U
D8 the short silver ribbon The only ribbon that is short

is silver; short is minimally
distinguishing.

O

A11 the yellow circular pipe-cleaner The only pipe-cleaner this is
yellow is circular; yellow rules
out the same set of pipe-
cleaners that circular does; ei-
ther yellow or circular would
be minimally distinguishing.

R

A7 a sparkly small pom-pom The only pom-poms that are
sparkly are small; unclear
which is meant

U, O

Table 3. Underspecification (U), Overspecification (O), and Redundancy
(R): Examples from the Craft Corpus. Contrast items shown in Figure 3.

3.4.2. Object Dimensionality. In addition to properties that pick out referents,

throughout the data we see reference to the objects’ dimensions. This includes reference

with size modifiers, and reference to objects’ parts, picking out pieces take up different

locations within the whole object. This points to an underlying dimensional object

representation that may be utilized during reference.

3.4.2.1. Size Comparisons. A total of 134 expressions (25.67% of all expressions) re-

fer to size with a vague modifier (e.g., “big”, “wide”). Only two references (0.38% of all

expressions) use an estimate for a crisp measurement (e.g., “1 centimeter”), and both

are produced by the same participant. Vague size modifiers include comparative (e.g,

“larger”) and superlative (e.g., “largest”) forms, which appear in 44 references, and base

forms (“large”) which appear in 88 references. Two references include both comparative/-

superlative and base forms, “the smallest long ribbon” and “a small, the smaller of the
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Part-whole modularity Relative Size Analogies
“a green pom-pom. . . “a red foam-piece. . . “a natural-looking piece

with the tinsel on the outside” which is more square of pipe-cleaner, it looks
“your gold twisty ribbon. . . in shape rather than a bit like a rope”

with sequins on it” the longer rectangle” “a pipe-cleaner that
“a wooden bead. . . “the grey pipe-cleaner. . . looks a bit like. . .

with a hole in the center” which is the thicker one. . . a fluffy caterpillar”
“one of the green pom-poms. . . “the slightly larger one” “the silver ribbon

with the sort of strands “the smaller silver ribbon” that’s almost like
coming out from it.” “the short silver ribbon” a big S shape.”

“the silver ribbon. . . with the chainmail “quite a fat rectangle” “a. . . pipe-cleaner
detail down through the middle of it.” “thick grey pipe-cleaner” that looks like tinsel.”

11 References, 2.11% 134 References, 25.67% 13 References, 2.49%

Table 4. Frequency and examples for expressions with part-whole rela-
tions, size, and analogies.

five...”. Further examples of size language are given below, and the frequencies of each

are listed in Table 5.

(3.1) Comparative: “the bigger pom-pom”

(3.2) Superlative: “the green largest pom-pom”

(3.3) Base: “the large orange pipe-cleaner”

Comparative/Superlative: 44 (32.35%; 8.43% of all expressions)
Base: 88 (65.44%; 17.05% of all expressions)
Both: 2 (1.47%; 0.38% of all expressions)
Crisp: 2 (1.47%; 0.38% of all expressions)
One or two axes: 37 (27.21%; 7.09% of all expressions)
Overall size: 99 (72.79%; 18.97% of all expressions)

Table 5. Size modifier breakdown.

Of the references that mention size, 99 (72.79% of the expressions with size in them) use

a vague modifier that refers to the overall size of the object (“big”, “small”, “medium”).

The 37 remaining references (27.21%) use a modifier that applies to one or two dimen-

sions. This includes modifiers for height, the size along the y-axis (“the short silver
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ribbon”), width, the size along the x-axis (“quite a fat rectangle”), and width/depth, in-

cluding size along both the x- and z-axes (“the thick grey pipe-cleaner”). The distinction

between these kinds of modifiers is further discussed in Chapter 4.

Current approaches to size in REG utilize size measurements that are explicitly given

(cf. van Deemter (2006)), or else require size values to be predefined. In a visual domain,

almost all participants produce vague size modifiers without sizes or measurements ex-

plicitly given; with an input of a visual object presentation, their output includes size

modifiers. Such data suggests that natural reference in a visual domain utilizes processes

comparing the height, width, and depth of a target object relative to other objects in the

set. Indeed, several references in the data set include explicit comparison with the size

of other objects:

(3.4) “a red foam-piece. . . which is more square in shape rather than the longer

rectangle”

(3.5) “the grey pipe-cleaner. . . which is the thicker one. . . of the selection”

(3.6) “the shorter of the two silver ribbons”

(3.7) “the longer one of the ribbons”

(3.8) “the longer of the two silver ribbons”

In Example (3.4), height and width across two different objects are compared, distin-

guishing a square from a rectangle. In (3.5), “thicker” marks the referent as having a

larger circumference than other items of the same type. (3.6) (3.7) and (3.8) compare

the height of the target referent to the height of similar items.

The use of size modifiers in a domain without specified measurements suggests that when

people refer to an object in a visual domain, they are sensitive to its size and structure

within a dimensional, real-world space. Without access to crisp measurements, people

compare relative size across different objects, and this is reflected in the expressions they

generate. These comparisons are not only limited to overall size, but include size in

each dimension. This is compelling evidence that objects’ three-dimensional structure,
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particularly the size of each axis, should play a role in the construction of a referring

expression in a visual domain, a finding also noted in work in psycholinguistics (cf. Landau

and Jackendoff (1993)). I address how this can be implemented next, in Chapter 4.

3.4.2.2. Part-Whole Modularity. The role that a dimensional object understanding

has within reference is further detailed by utterances that pick out the target object by

mentioning an object part. 11 utterances (2.11%) in the data include an object part and

its location within reference to the whole object. Half of the participants make reference

to an object part at least once. Examples are given below.

(3.9) “a green pom-pom, which is with the tinsel on the outside”

(3.10) “your gold twisty ribbon. . . with sequins on it”

(3.11) “a wooden bead. . . with a hole in the center”

In (3.9), (3.10), and (3.11), parts of the objects are isolated from the whole object with

their relative locations specified. This part-whole modularity (a term first introduced

by Roy and Reiter (2005)) suggests that for an REG algorithm to generate these kinds

of references, it must be provided with a model detailing the structure of each object,

with the whole object as well as parts in, on, and around it represented. Part-whole

modularity is (unfortunately) not explored further in this thesis.

3.4.3. Analogies. The data from this study also provide information on what can

be expected from a knowledge base in an algorithm that aims to generate naturalistic

reference. Reference is made 13 times (2.49%) to objects not on the board, where the

intended referent is compared against something it is like. Examples are given below.

(3.12) “a gold. . . pipe-cleaner. . . completely straight, like a ruler”

(3.13) “a natural-looking piece of pipe-cleaner, it looks a bit like a rope”

(3.14) “a pipe-cleaner that looks a bit like. . . a fluffy caterpillar. . . ”
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In (3.12), a participant makes reference to a shape property of an object not on the

board. In (3.13) and (3.14), participants refer to objects not on the board that typically

share a variety of properties with the referent.

Reference to these other items do not pick out single objects, but types of objects (e.g., an

object type, not token). They correspond to some typical idea of an object with properties

similar to those of the referent. Rosch (1975) examined this tendency, introducing the

idea of prototype theory, which proposes that there may be some central, prototypical

notions of items that arises from stored typical properties for an object category (see

Chapter 2 for further review).

A knowledge base with typical object properties could be utilized by an REG algorithm

to compare the target referent’s properties to typical properties of other objects. Such

representations would help guide the generation of reference to items not in the scene,

but similar to the target referent. I do not examine analogies further in this thesis, but I

do work on the construction of a knowledge base of typical object properties in Chapters

5 and 8, and such a structure may be useful to build analogies in future work.

3.4.4. Speaker Variation. What is also clear from this study is that speakers are

varied in the kinds of expressions they produce. It is worth noting that this variation

is not normally distributed: There is a tendency to include color, and to include size

when there is another object of the same type nearby. We therefore see that it is most

common to describe an object by its type and color; this is followed by a preference

to describe objects by their size, type and color. For the same referents, we also see

underspecification, referring to just the object type; we also see overspecification, with,

e.g., both color and size mentioned (see Table 3).

From a modeling perspective (Chapter 7), this speaks to the utility of a stochastic func-

tion that captures similar human tendencies. For example, a function that will give higher

weight to color and size over material and texture, and so most frequently generating

initial reference with color modifiers. I introduce such an approach in Chapter 7.
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3.5. Implications: Distinguishing, Describing, and Reference

I have discussed several different aspects of reference in a study where referring expres-

sions are elicited for objects in a real world visual scene. Reference in this domain appears

to utilize object forms as they exist in a three-dimensional space and utilizes background

knowledge to describe referents by analogy to items outside of the scene. This is un-

doubtedly not an exhaustive account of the phenomena at play in such a domain, but

offers some initial conclusions that may be drawn from exploratory work of this kind.

Before continuing with the discussion, it is worthwhile to consider whether some of the

data might be seen as going beyond reference. Perhaps the participants are doing some-

thing else, which could be called describing. Clark and Wilkes-Gibbs (1986) claim that

on the first trial in their study, directors always describe the figure – using an indefinite

description – while on the rest of the trials, they refer to it – using a definite description.

How to draw the line between a distinguishing reference and a description, and whether

such a line can be drawn at all, is an interesting question, and I address this in Chapter 2

Section 2.2.1. If the two are clearly distinct, then both are interesting to NLG research.

If the two are one in the same, then this sheds some light on how REG algorithms should

treat reference.

If what marks whether something is being described or being referred to is the type

of determiner used (“the” or “a”), then it is noteworthy that frequency of each type is

essentially equal in this data. Is half the data referring expressions and half the data

descriptions? Or is one kind reference to an object token, while another reference to an

object type? If the participant adds more information in the definite description, e.g.,

“the shorter ribbon with the sequins running down”, does the expression move from being

reference to being a description?

This experiment supports the idea that the difference between describing and distin-

guishing is not so clear in initial reference to visible objects, and may stand as theoreti-

cal endpoints on a continuum. Referring, then, may be seen as suggested by Clark and



Chapter 3.6 Page 79

Bangerter (2004), establishing (i) an individual as the referent; (ii) a conceptualization

or perspective on that individual. Schematically, referring = indicating + describing;

it distinguishes, it describes, may distinguish by describing, and whether the properties

used are indicative of one or the other is not necessarily clear.

3.6. Towards an Algorithm

I now turn to a discussion of how the observed phenomena may be best represented in

an REG algorithm. I propose that an algorithm capable of generating natural reference

to objects in a visual scene should utilize:

(1) a spatial representation; a model of the object’s dimensions and relative location

of parts.

(2) a propositional representation; a model of non-spatial features such as color

and texture.

(3) a knowledge base of object typical object properties.

3.6.1. Spatial Knowledge. It is perhaps unsurprising to find reference that ex-

hibits dimensional awareness in a study where objects are presented in three-dimensional

space. Human behavior is anchored in space, and spatial information is essential for our

ability to navigate the world we live in. However, referring expression generation algo-

rithms geared towards spatial representations have largely oversimplified this tendency,

keeping objects within the realm of two-dimensions, and leaving size to the basic forms

of small and large.

There has been some useful work done on spatial relations between objects. For example,

Funakoshi (2004) and Gatt (2006) focus on how objects should be clustered together to

form groups. Similarly, one of the strengths of the Graph-Based Algorithm (Krahmer et

al., 2003) is its ability to generate expressions that involve relations between objects, and

these include spatial ones (“next to”, “on top of”, etc.). In all these approaches, however,

objects are essentially one-dimensional, represented as individual nodes.
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Work that does look at the spatial information of different objects is provided by Kelleher

et al. (2005). In this approach, the overall volume of each object is calculated to assign

salience rankings, which then allows the Incremental Algorithm (Dale & Reiter, 1995) to

produce otherwise underspecified reference. Dimensional properties of the referent are

not used in constructing the referring expression, but one aspect of the object’s three-

dimensional shape (volume) affects the referring expression’s final form (further work in

this vein is detailed in Chapter 2). To my knowledge, the current work is the first to

suggest that objects themselves should have a dimensional representation (x, y, and z

axes) that guides how the reference is constructed.

This is supported by previous work that shows that we attend to the spatial proper-

ties of objects when we view them (Blaser, Pylyshyn, & Holcombe, 2000), and we have

purely spatial attentional mechanisms operating alongside non-spatial, feature-based at-

tentional mechanisms (Mishkin et al., 1983; Treue & Trujillo, 1999). These feature-based

attentional mechanisms pick out properties commonly utilized in REG, such as tex-

ture, orientation, and color. They also pick out edges and corners, contrast, and

brightness. Spatial attentional mechanisms provide information about where the non-

spatial features are located in relation to one another, size, and the spatial interrelations

between component parts.

Applying these ideas to this study, an REG algorithm that generates natural reference

should utilize a visual, feature-based representation of objects alongside a structural,

spatial representation of objects. A feature-based representation is already common to

REG, and could be represented as a series of <attribute:value> pairs. A spatial

representation is necessary to define how the object is situated within a dimensional

space, providing information about the relative distances between object components,

edges, and corners.

With such information provided by a spatial representation, the generation of part-whole

expressions, such as “the pom-pom with the tinsel on the outside”, may be possible. This
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also allows for the generation of size modifiers (“big”, “small”), for example, by comparing

the difference in overall height of the target object with other objects in the scene, or

against a stored prototype (discussed below). Relative size comparisons across different

dimensions could also be made, used to generate size modifiers such as “wide” and “thick”

that refer to one or two dimensional axes. We propose a model for the generation of size

modifiers in the next chapter, Chapter 4.

3.6.2. Propositional Knowledge. Referring expression generation algorithms com-

monly utilize an input that lists properties within the scene. In the Incremental Algo-

rithm, the properties are available in a ‘preference order’ list. In the Graph-Based Algo-

rithm (Krahmer et al., 2003), they are associated to weights. I find that assuming objects

have properties that are available for use during generation fits well with the data; object

properties are mentioned explicitly in all of the elicited reference. I can account for the

majority of the data by proposing that properties of objects in the scene are utilized

to form a referring expression, e.g., that properties of objects in the scene may serve as

input to a referring expression generation algorithm. I examine this in further detail in

Chapters 7 and 8, proposing a model that builds properties from visual input and then

uses these to refer to a target object.

However, there is not always a clear distinction between type and other sorts of prop-

erties, such as shape and material. This runs counter to the usual assumptions of

referring expression generation, where type is given a special treatment separate from

other kinds of properties.

For example, one participant mentions “one little green foam heart” while another men-

tions a “small green heart foam-piece”, referring to the same object. In order to account

for such variation in the Incremental Algorithm and other models of referring expression

generation, these two expressions must be generated from two different sets of proper-

ties. One set, to generate “one little green foam heart”, would have type corresponding

to ‘heart’ and material corresponding to ‘foam’. The other, to generate the “small
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green heart foam-piece”, would have type corresponding to ‘foam-piece’ and shape cor-

responding to ‘heart’. Such representations would miss the clear generalization that the

two expressions are naming the same properties of the same object, and just have different

surface forms.

This may be seen as a user model issue. Different subjects have different domain models

of the craft domain (which may partially reflect differences in expertise), and this will

affect (amongst other things) what the possible values for type are in the referring

expressions they produce. shape and material, for example, may be realized as a head

noun to name an object depending on how familiar the subject is with the object.

3.6.3. Typicality and Analogies. When we use analogies, as in “the pipe-cleaner

that looks like a caterpillar”, we use world knowledge about items that are not themselves

visible. Such an expression draws on similarity that does not link the referent with a

particular object, but with a general type of object: the pipe-cleaner is caterpillar-like.

To generate these kinds of expressions, an REG algorithm would first need a knowledge

base listing typical values of attributes. For example, a banana object might have a

typical color of yellow. With typical object properties in the knowledge base, the REG

algorithm would need to calculate similarity of a target referent to other known items.

This would allow a piece of yellow cloth, for example, to be described as being the color

of a banana.

Implementing such similarity measures in an REG algorithm is challenging. One difficulty

is that typicality values may be different depending on what is known about an item; a

typical unripe banana may be green, or a typical rotten banana brown. Another difficulty

will be in determining when a referent is similar enough to a stored object to warrant an

analogy. Additional research is needed to explore how these properties can be reasoned

about. I further explore what affect typicality has on reference in Chapter 5, and develop

a knowledge base representation of typical properties in Chapter 8.
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Approaching REG in this way follows work in psycholinguistics that posits the existence

of some kind of object typicality structure in people’s mental representations of objects

(Rosch et al., 1976; Wu & Barsalou, 2009, also see Chapter 2 Section 2.2.2), and work

in cognitive science and neurophysiology that suggests that expectations about objects’

visual and spatial characteristics are derived from stored representations of typical ob-

ject features in the inferior temporal lobe of the brain (Logothetis & Sheinberg, 1996;

Riesenhuber & Poggio, 2000; Palmeri & Gauthier, 2004). Most formal theories of ob-

ject perception posit some sort of category activation system (Kosslyn, 1994), a system

that matches input properties of objects to those of stored typical objects, which then

helps guide expectations about objects in a top-down fashion.3 This appears to be a

neurological correlate of the knowledge base I propose to underlie analogies.

Such a system contains information about typical object component parts and where

they are placed relative to one another, as well as relevant values for material, color,

etc. This suggests that the spatial and non-spatial feature-based representations pro-

posed for visible objects could be used to represent typical object representations as well.

Indeed, how we view and refer to objects appears to be influenced by the interaction of

these structures: Expectations about an object’s spatial properties guide our attention

towards expected object parts (Mackworth & Morandi, 1967) and non-spatial, feature-

based properties throughout the scene (Kosslyn, 1994; Itti & Koch, 2001). This affects

the kinds of things we are most likely to generate language about (Itti & Arbib, 2005).

3.6.4. Further Implications. Most implemented algorithms focus on unique iden-

tification of a referent, determining the set of properties that distinguish a particular

target object from the other objects in the scene (the contrast set). This view of refer-

ence was first outlined by Olson (1970), “the specification of an intended referent relative

to a set of alternatives”. A substantial body of evidence now shows that contrastive

value relative to a set of alternatives is not the only factor motivating speakers’ choice

3Note that this is not the only proposed matching structure in the brain – an exemplar activation

system matches input to stored exemplars.
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of properties in reference. The phenomena of overspecification and redundancy, where

speakers select properties which have little or no contrastive value and confirmed in this

study, was observed in early developmental studies in visual domains (Ford & Olson,

1975; Whitehurst, 1976; Sonnenschein, 1985), later studies on adult speakers in visual

domains (Pechmann, 1989; Engelhardt, Bailey, & Ferreira, 2006; Koolen et al., 2011),

and confirmed in this study as well. The related phenomenon of underspecification, where

speakers select a set of properties that do not linguistically specify the referent, has also

received some attention, particularly in visual domains (H. H. Clark et al., 1983; Kelleher

et al., 2005; Viethen et al., 2008, see Chapter 2 Section 2.2.2.2 for a further discussion).

In this exploratory work, I have found that rather than uniquely identify objects using a

set of contrasting properties, participants tended to include detailed information about

the objects’ parts and analogies to other things that the object is most like. Along with

the phenomena of over- and underspecification, this suggests that people select distin-

guishing properties not just as a function of their discriminatory power, but by how

visually salient they are within the scene, how common each property is to mention,

and how each property compares to stored representations of similar objects. Addition-

ally, there are a variety of expressions that people produce, with tendencies for some

expressions over others. I introduce a new algorithm that takes many of these issues into

account in Chapter 7.

I have also found support for a knowledge base used during reference that contains

typicality profiles of objects. This opens up the possibility of generating many other

kinds of natural references; in particular, such knowledge would allow the algorithm

to compute which properties a given kind of referent may be expected to have and

which properties may be unexpected. Unexpected properties may therefore stand out as

particularly salient. For example, a dog missing a leg may be described as a “three-legged

dog” because the typical dog has four legs.
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I believe that this perspective, which hinges on the unexpectedness of a property, suggests

a new approach to attribute selection. Unlike the Incremental Algorithm, the order in

which attributes are examined would not be fixed, but would depend in part on the

nature of the referent and what is known about it. I further explore the role of typicality

in Chapter 5, examining the properties of material and shape. These findings are

implemented in the algorithm in Chapter 7.

3.7. Conclusions and Future Work

I have explored the interaction between viewing objects in a three-dimensional, spatial

domain and referring expression generation. This interaction has shed light on structures

that may be useful in connecting vision in the real world to naturalistic reference. The

proposed structures include a spatial representation, a propositional representation, and

a knowledge base with representations for typical object properties. Using structures that

define the propositional and spatial content of objects fits well with work in psycholin-

guistics, cognitive science and neurophysiology, and may provide the basis to generate a

variety of natural-sounding references from a system that recognizes objects.

One interesting issue I did not explore here is the issue of dual contrast sets. In the

study discussed in this chapter, one contrast set is the group of craft items in front of

the speaker, and the other contrast set if the group of craft items making up the face.

As items in one go down, items in the other go up. The question that comes up about

this is whether people will distinguish in terms of the items in the craft face, or in terms

of all the craft items available to them. This would make the difference between saying,

for example, “Place all the pink fluff balls” and “Place 6 pink fluff balls”. I did not look

at this effect in great detail, and hope to examine this further in future work.

It is important to note that any naturalistic experimental design limits the kinds of

conclusions that can be drawn about reference. A study that elicits reference to objects in

a visual scene provides insight into reference to objects in a visual scene; these conclusions
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cannot easily be extended to reference to other kinds of phenomena, such as reference to

people in a novel. I therefore make no claims about the broader task of reference in this

chapter; generalizations from this research can provide hypotheses for further testing in

different modalities and with different sorts of referents.

What is clear from the data is that both a spatial understanding and a non-spatial feature-

based understanding appear to play a role in reference to objects in a visual scene, and

further, reference in such a setting is bolstered by a knowledge base with stored typical

object representations. Utilizing structures representative of these phenomena, we may

be able to extend object recognition research into object reference research, generating

natural-sounding reference in everyday settings.

In the next chapter, I focus on the dimensional representation of objects, building a

computational model for the second most common property in this study and one of the

primary properties in visual perception: size.



Chapter 4

Size

4.1. Introduction

The exploratory experiment in the last chapter discussed the predominance of size in

describing objects. Evidence from other visual description tasks further suggests that

size is a salient property, particularly when objects of the same type are in the scene

(Brown-Schmidt & Tanenhaus, 2006; Sedivy, 2003). This is further supported by tagging

visually descriptive text (Table 1), where we find top words denoting size and color, with

little, long, and large appearing in the thirty most common adjectives.1

If size-denoting adjectives play a key role in describing the visual world, then we can shed

some light on how to generate visual descriptions by examining how size features map to

size language. By using features that characterize an object’s size – its height and width,

for example – we can begin to predict the kind of size words that speakers are likely to

use for different objects.

As a first-pass analysis of the problem, consider the pictures in Figure 1 below.

In the pictures of the mice, the mouse in the middle may be large in the first picture,

but thin in the second picture. In the pictures of the tables, table A is taller and wider

than table B, so it is true that A is taller than B; it is true that A is wider than B; it is

also true that A is bigger than B. All three words may be appropriate to refer to A, but

may mean something very different and reflect different properties of a referent.

1The fact that size-denoting adjectives are so prevalent in these corpora is likely due to the fact that
size words are used both visually and non-visually: Lacking a way to automatically distinguish between
the two is further reason to understand what characterizes visually descriptive language. It is for this
reason that I use visually descriptive text and not, e.g., the BNC to get a sense of the size adjectives
that are used.
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1 2

A B
Figure 1. Size variations: What are the appropriate lexical forms?

word count freq. word count freq.
little 1213 0.0292 much 309 0.0074
old 979 0.0236 new 287 0.0069
other 762 0.0183 whole 273 0.0066
more 662 0.0159 few 270 0.0065
good 637 0.0153 large 269 0.0065
great 588 0.0142 next 253 0.0061
last 517 0.0124 sure 238 0.0057
such 473 0.0114 better 226 0.0054
own 438 0.0105 white 211 0.0051
same 429 0.0103 black 210 0.0051
young 424 0.0102 high 203 0.0049
first 393 0.0095 full 181 0.0044
many 379 0.0091 dead 180 0.0043
long 372 0.0090 least 176 0.0042
poor 351 0.0084 dark 175 0.0042

Table 1. Top 30 adjectives: Andersen’s Fairy Tales, Brönte’s Wuthering
Heights, E.T.A. Hoffman’s Devil’s Elixir, Mark Twain’s Life on the Missis-
sippi, Lewis Carroll’s Through the Looking Glass, Sheridan le Fanu’s Uncle
Silas. Extracted using the Stanford part-of-speech tagger.
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In the following sections, I describe three studies examining the usage of size modifiers.

The term “modifier” is often used rather than “adjective” to refer to the variety of surface

forms in which size may be realized: as an adjective (“the short box”), relative clause

(“that is shorter”), or prepositional phrase (“with less height”).

In the first study on size, I seek to better understand the relationship between an object’s

dimensions and the words used to identify it. I conduct an experiment to elicit size-

denoting modifiers from images of real world objects, and evaluate three hypotheses that

explore this relationship. These hypotheses test the interacting height and width features

that are involved in the selection of size modifiers, and illustrate when preferences for

overall size modifiers (“big”, “small”) versus individuating size modifiers (“tall”,

“thin”) emerge in different contexts. Additionally, I am able to confirm the Hermann and

Deutsch (1976) findings on size preferences, and further build on these results.

In Study 2 (Section 4.4), I expand the first study to an additional 414 participants, and

examine how well a machine-learning approach does at predicting among three basic

size types. Taking the findings from Study 1 as a starting point, I develop an end-to-end

connection from visual features to size language. This incorporates a visual front-end

as input to the size classification task, using an image processing technique called SIOX

(Friedland et al., 2005). I test whether real world measurements are better predictors of

size language than pixel-based (image) measurements, and find that they are.

Study 3 (Section 4.5) further builds on the prior two studies, predicting among six more

fine-grained size types. In this study, I compare a full hand-coded size generation

algorithm to a decision tree-based binary classification task that predicts the inclusion

of each size type, and find that the two approaches perform comparably, predicting well

over the majority of size language used by participants. Remarkably, the size generation

approaches work even better when tested in a new domain, and I discuss how this work

folds into a larger visual description generation algorithm.
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The first two studies on size examine how size modifiers are used with just a single

comparator object in the scene beside the target. In the third study, I apply the ap-

proaches developed on this data to a corpus with several comparator objects, illustrating

its applicability across domains and in more complex scenes. The approaches are easily

adapted to handle several comparators rather than just one by using the average height

and width of all objects of the same type as the target referent.

Throughout, I will use the terms h and height to refer to an object’s y-axis in a three-

dimensional space, and w and width to refer to an object’s x-axis in three dimensional

space.

4.2. Background

4.2.1. Size Research. To my knowledge, a thorough analysis on the use of different

size adjectives to refer to an object’s size is not available prior to this work. However,

previous research does suggest the kinds of features that may influence the selection of

size modifier. Landau and Jackendoff (1993) point out that a modifier like “big” selects

different dimensions depending on the nature of the object, and tends to be used in

cases where an object is large in either two or all three of its dimensions, while modifiers

like “thick” and “thin” may be applied when an object extends in a single dimension

(see Chapter 2 Section 2.2.2). Hermann and Deutsch (1976) show that when people are

presented with an object with two axes of different sizes than a comparator’s, they are

more likely to refer to the axis with the larger difference. Roy (2002) finds that words

like “small” and “large” cluster together, but that “tall” is placed in a separate cluster.

There has been considerable research on the behavior of size modifiers for other pur-

poses, such as the semantics of dimensional modifiers (Bierwisch & Lang, 1989; Eilers,

Oller, & Ellington, 1974; Tucker, 1998; Morzycki, 2009) and the acquisition of the mean-

ing of such modifiers (Bartlett, 1976). We also know roughly how to choose between

different forms of a size adjective (“larger”, “largest”) (van Deemter, 2006). A primary
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open question this research leaves is whether people distinguish objects by focusing on

one single dimension or by combining dimensions, and how these are realized as surface

forms. Given information about an object’s height and width, it is unclear how it will

be referred to.

Utilizing images of real objects to predict the size modifier types used in reference

supplies a non-trivial computer vision input while following work in developing compu-

tational models that bridge the symbolic realm of language with the physical realm of

real world referents (Roy & Reiter, 2005; Tanenhaus et al., 1995). Approaching the task

in this way provides detailed information about which visual size features may affect the

form of a referring expression, and I discuss the implications of the findings for research

in referring expression generation.

Most REG algorithms presuppose that referents are individuated using absolute prop-

erties, whose applicability to a referent does not depend on the context in which the

referent appears. They therefore do not provide mechanisms for reasoning about how a

property may involve interacting features, such as the interaction of an object’s height

with its width. In Dale and Reiter (1995) and Krahmer et al. (2003), the knowledge

base must mark elements as large or small. Van Deemter (2000, 2004) modifies this

procedure by storing actual sizes (e.g., in centimeters) in the knowledge base, making the

decision of whether something is larger or smaller context dependent. More fine-grained

size modifiers are presumably considered lexical decisions, made by a later module that

translates properties into words.

The problem with these proposals is that they do not do justice to the fact that size can

involve a combination of dimensions; a turtle may be fat, or big, but seldom tall.

This property of reference is not only important for work in referring expression gener-

ation that uses size (Kelleher et al., 2005; van Deemter, 2006; Viethen & Dale, 2008),

but it offers a clear link between language generation and computer vision techniques

that provide detailed information about an object’s physical dimensions (Friedland et
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al., 2005; Zheng, Yuille, & Tu, 2010). Systematically manipulating the visual feature of

size to develop an account of how size is used in reference furthers the goal of develop-

ing a grounded semantic core for natural language (Gorniak & Roy, 2004), tying visual

perception to linguistic reference.

4.2.2. Machine Learning and Object Description. This exploration into gen-

erating size modifiers includes a machine learning component. Although there has not

been previous work on machine learning specifically for the generation of size modifiers,

there has been previous work on machine learning for broader object descriptions. I

therefore provide some background for these approaches.

Previous work on determining the form of an object description using machine learning

has created models that predict a wide range of properties, such as the inclusion of

color, location, etc., as well as the overall form of the noun phrase (e.g., personal

pronoun, definite description). These approaches utilize a variety of contextual features,

such as intentional influences and conceptual pact features (Jordan & Walker, 2005) and

syntactic, semantic, and discourse features (Poesio, 2000).

A clear area where machine learning may be useful in building REG models is in pre-

dicting different references for different speakers, incorporating the observation that to

generate natural reference, one must account for speaker variation (Reiter & Sripada,

2002). In light of this, recent work in REG has begun to use speaker-specific constraints

in order to improve the performance of reference algorithms (Fabbrizio, Stent, & Ban-

galore, 2008). In work most closely related to this work, Viethen and Dale (2010) use a

decision tree classifier to predict the set of attributes different speakers will use to refer

to geometric shapes. The results are mixed, largely due to the lack of data for many of

the proposed classes; however, there is a significant increase in accuracy when speaker

identity is included as a model feature.

It is important to note that at both ends of this connection, the problem is reduced to

basic levels. The visual input of images is an obvious application for computer vision
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that utilizes object recognition. However, object recognition can only return regions of

an image where an object is likely to exist, not the specific details of the object’s di-

mensions (Walther, Itti, Riesenhuber, Poggio, & Koch, 2002; Lowe, 2004, see Chapter

2 Section 2.4). To reason about an object’s shape, an object segmentation approach is

needed, with the general location of the object already specified. Work linking object

recognition to object segmentation is still quite new (e.g., Zheng et al., 2010). I there-

fore compare real world measurements to measurements extracted from semi-supervised

object segmentation.

At the other end of the vision-language connection is REG, a well-developed subfield

within natural language generation. However, as discussed in Chapter 2 and the In-

troduction, REG has focused on categorizing which subset of scene attributes may be

selected to identify an object. In this study, I take a more fine-grained approach by

exploring the use of a single attribute – size – and several of its possible forms. I hope

that this research provides a basic foundation from which to raise the complexity at both

ends.

I therefore set out to examine how the words proposed to refer to specific axes, like “tall”

and “thick”, are used differently than words proposed to refer to overall size, like “large”

and “small”. The first type I will call individuating size modifiers and the second

overall size modifiers.2

Over the course these three studies, I explored the visual features that can be used to

determine size and introduced two approaches to size modifier generation. These are

developed for the microplanning stage of a natural language generation system (Reiter

& Dale, 2000, see Chapter 1 Section 1.2), generating a size type that directly informs

lexical choice and surface realization of a final string.

2Note that individuating size modifiers may occasionally pick out more than one axis, e.g., as in
the word “thick”.
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height - - height - height +

height ++ width - - width -

width + width ++
Figure 2. Examples of all books stimuli differing on one dimension. Tar-
get referent is on the right, and is a lot shorter (height - -), a little wider
(width +), etc.

.

4.3. Study 1

In the first study on size, I elicited size-denoting language to images of real world objects.

The initial hypotheses were designed to formalize aspects of reference to size that have

been implied by earlier work (e.g., Landau & Jackendoff, 1993), but have not yet been

systematically tested. This provides a basis from which to design an REG algorithm that

refers to an object’s size.
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I categorize the size language that people use as being either individuating (words

like “tall” and “thin”), overall (words like “big” and “small”), or neither (no size

modifier), and find that the selection of these modifier types is predictable. I also find

strong evidence that the selection of each is brought about by several interacting factors

in this domain, including how a target object’s physical dimensions differ from another

object of the same type, and the relationship between the target object’s individual

dimensions. Findings from this study are used to inform the initial design of a hand-

coded algorithm capable of referring to objects naturally, providing a further link between

visual cues and corresponding linguistic forms.

4.3.1. Experiments. The experiments in this study are designed to examine what

happens when a referent object is different in size from a comparator object (1) along a

single axis; (2) along two axes, in the same direction (both axes larger or both smaller);

and (3) along two axes, in opposite directions (one axis larger, one smaller). An example

of test stimuli with one set of objects differing along a single axis (the height or y axis

and the width, or x axis) are shown in Figure 2. Hypotheses are listed below.

H1 When a single dimension differs between a referent object and another object

of the same type, an individuating size modifier will be produced more often

than an overall size modifier.

H2 When two dimensions differ in the same direction between a referent object and

another object of the same type, an overall size modifier will be produced

more often than an individuating size modifier.

H3 When two dimensions differ in opposite directions between a referent object

and another object of the same type, an individuating size modifier will be

produced more often than an overall size modifier.

It is relatively straightforward to write a deterministic algorithm capturing what we

hypothesize people will tend to do when to compare dimensions between two similar

objects, and I sketch such an algorithm in Figure 3. Note that some aspects are still
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left unspecified, and the algorithm does not address how large a difference must be in

order to be salient – clearly, some differences between referent and comparator may be

too small to elicit a corresponding modifier. This is an area for future work.

Lines 3 and 6 represent H2, returning an overall size modifier depending on the

differences between dimensions. Lines 4 and 7 roughly represent H3, and call to a second

function motivated by Hermann and Deutsch (1976), LargestDimDiff, which returns

the dimension with the greater difference (if they are equal, the algorithm can randomly

select one axis). Lines 5, 8, 9, and 10 represent H1. The final size modifier structure

an overall size modifier (<‘over’>), or an individuating size modifier picking out

a specific axis (<‘ind’, ‘x’> or <‘ind’, ‘y’>), along with whether the modifier should

capture a larger (1) or smaller (0) difference. Thus, for example, (<‘over’>, 1) could be

realized as “large” or “big”, while (<‘ind’, ‘y’>, 0) could be realized as “short”.

Fitting this within the larger framework of referring expression generation, this algorithm

decides (1) whether or not to include a size modifier; and (2) the general semantic type

of the size modifier. For (1), if line 11 is true, the algorithm returns (None, None),

showing there is no size difference and no size modifier will be used. In this way, the

size algorithm may always called during REG given the heights and widths of objects

in the scene, regardless of the discriminatory power of size; there’s either a size modifier

type returned or no size modifier type returned.

However, I expect that what this algorithm captures is not the whole story, and return

to this issue in Section 4.3.5.

The stimuli in this study were photographs of real world objects, and the objects were

physically cut and shaped into different sizes.

4.3.2. Method.

4.3.2.1. Participants. 95 subjects collected using Amazon’s Mechanical Turk (Amazon,

2011) were paid for their participation. 87 of these participants labeled themselves as
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Input: Referent height, width (ry, rx)
Average height, width for comparators of referent’s
type (dy, dx).

Output: Size modifier type.

SizeMod(rx, ry, dx, dy):
1. axes = <rx, ry, dx, ry>
2. case (mod, pol) of:
3. ry > dy and rx > dx: (<‘over’>, 1)
4. ry > dy and rx < dx: LargestDimDiff(axes)
5. ry > dy and rx == dx: (<‘ind’, ‘y’>, 1)
6. ry < dy and rx < dx: (<‘over’>, 0)
7. ry < dy and rx > dx: LargestDimDiff(axes)
8. ry < dy and rx == dx: (<‘ind’, ‘y’>, 0)
9. ry == dy and rx > dx: (<‘ind’, ‘x’>, 1)
10. ry == dy and rx < dx: (<‘ind’, ‘x’>, 0)
11. ry == dy and rx == dx: (None, None)
12. return (mod, pol)

LargestDimDiff(<rx, ry, dx, dy>):
axis = axis with largest difference between r and d (x or y)
pol = direction of difference (1 or 0)
return (<‘ind’, axis>, pol)

Figure 3. Initial algorithm for generating size modifiers. 1 is used to des-
ignate a positive polarity (+) and 0 a negative polarity (-). ‘ind’ represents
individuating modifiers, and ‘over’ represents overall modifiers.

“Native” or “Fluent”. From this set, I randomly chose a subset of 60 total participants,

spread evenly as groups of 20 in each of the three experiments.

4.3.2.2. Materials. Several different objects were used to elicit size modifiers. These

objects were sponges, boards, books, and brownies. All objects were rectilinear solids,

varied along their height and width dimensions. The objects were intermixed with fillers,

discussed in further detail below.

Each object appeared to the right of a comparator object of the same type (see Figure 4).

The target object could appear in 24 different sizes, systematically varied along height

and width axes: larger (++, axis 5/4 size of comparator), a little larger (+, axis 11/10
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Figure 4. Example stimuli: sponges (h++/w- -), books (h-/w0), boards
(h- -/w- -), and brownies (h++/w0). Object sizes are annotated as
height/width combinations (see Table 2).

Object
Height Width

++ + 0 - - - ++ + 0 - - -
brownies 11.25 9.90 9.00 8.18 7.20 11.25 9.90 9.00 8.18 7.20
sponges 6.25 5.50 5.00 4.54 4.00 12.50 11.00 10.00 9.09 8.00
books 25.00 22.00 20.00 18.18 16.00 6.25 5.50 5.00 4.55 4.00
boards 19.05 16.76 15.24 13.84 12.19 25.4 22.35 20.32 18.47 16.26

Table 2. Measurements for objects along each axis (in cm). Object sizes
are annotated as height/width combinations, e.g., h++/w++.

size of comparator), no difference (0, axis same size as comparator), a little smaller (-,

axis 10/11 size of comparator) and smaller (- -, axis 4/5 size of comparator). Values

for these measurements are provided in Table 2. In the rest of this this chapter, these

annotations are used to denote height/width combinations for objects. For example, a

sponge that is h++/w0 has a height of 6.25cm and a width of 10cm, while a book that

is h++/w0 has a height of 25cm and a width of 5cm. A total of 96 images were used for

this study, split among three experimental groups, one for each hypothesis.

4.3.2.3. Design. I conducted three experiments, addressing each of the hypotheses.

The design for each was dimension (2: height, width) x degree of difference (2: small,

large) x direction of difference (2: bigger, smaller).
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Experiment 1: Differences of degree, single dimension. Responses were

elicited for objects with height/width combinations of h++/w0, h0/w++, h+/w0, h0/w+,

h-/w0, h0/w-, h- -/w0 and h0/w- - (8 conditions). Each target item differed from its

comparator item in one dimension.

Experiment 2: Differences of degree, matching across dimensions. Re-

sponses were elicited for objects with height/width combinations of h++/w++, h++/w+,

h+/w++, h+/w+, h- -/w- -, h- -/w-, h-/w- - and h-/w- (8 conditions). Each target item

differed from its comparator item in two dimensions and in the same direction for each;

the target item was either bigger overall or smaller overall than the comparator.

Experiment 3: Differences of degree, different polarities across dimen-

sions. Responses were elicited for objects with height/width combinations of h++/w-

-, h- -/w++, h++/w-, h-/w++, h+/w- -, h- -/w+, h+/w- and h-/w+ (8 conditions).

Each target item differed from its comparator item in two dimensions and in the oppo-

site direction for each; the target item had one axis bigger and one axis smaller than the

comparator.

For each experiment, I followed a Latin square design where all participants saw each

of the four object types, with two examples per condition (for example, both sponges

and brownies for the h++/w- - condition). This yielded 16 experimental stimuli per

participant. Each experiment had two subgroups, where one half (10 participants) saw

2 stimuli per condition, and the other half (10 participants) saw the other 2 stimuli per

condition.

Stimuli in each experiment were intermixed with the 24 filler pictures, consisting of

spatulas, Legos, and shoes. Spatulas appeared in groups of three and Legos and shoes

appeared as sets of two. Most objects in filler conditions could be distinguished using

part-whole phrases, e.g., “the one with the red Lego” or “the shoe with the laces untied”.

In total, each subject provided responses for 40 object pictures. Each picture was 400

pixels wide x 300 pixels high, and could be enlarged to 700 x 525 by clicking on it. Pictures
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were presented in random order, and experimental groups were assigned randomly. The

beginning of an example Mechanical Turk stimulus set seen by a participant is shown in

Appendix C.

4.3.2.4. Procedure. Instructions informed participants that they had been chosen as

“the thrower”, tossing objects down a tube to a person below, and their goal was to clearly

identify the object on the right so that the person below could pick it up.

Responses were manually corrected for spelling and normalized for punctuation and cap-

italization. For each expression, I annotate the modifiers as being individuating (i) –

words like “tall” and “thin” – overall (o) – words like “big” and “small” – or neither

(n).

Each individuating modifier was annotated by three postgraduates as being a height

modifier or a width modifier. I use the annotations from the annotator who had the

highest agreement with the other two, with a Cohen’s kappa of 0.90 (95% CI, 0.87–0.94)

and 0.71 (0.66–0.76). Table 3 lists the vocabulary and modifier types based on this data.

Most base modifiers have corresponding comparative (ending in -er) and superlative

(ending in -est) forms.

individuating
height: high long narrow short skinny slender squat tall thick thin
width: fat lengthy long narrow skinny slim thick thin wide

overall big large small

Table 3. Size vocabulary.

4.3.3. Results. Results are based on the 320 responses for each experiment. Each

response to the test stimuli is counted as either including or not including an individu-

ating size modifier (0 or 1) and including or not including an overall size modifier (0

or 1). Note that the two are not exclusive. For each participant, I sum the total number

of responses with each type of modifier. This provides two sets for a two-tailed paired

t-test in each of the analyses.
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Object, Cond. Expression Modifier Types
sponges, h+/w- - taller sponge individuating
boards, h- -/w++ the shorter and slightly wider board with

a diagonal top side
individuating

boards, h- -/w- - smaller board overall
brownies, h+/w- the most square brownie neither

Table 4. Example expressions for different <object, condition> stimuli.
Conditions are composed of different measurements of the height (h) and
width (w) axes.

Experiment individuating overall both neither
1 160 (50.0%) 114 (35.6%) 8 (2.5%) 38 (11.9%)
2 93 (29.1%) 211 (65.9%) 15 (4.7%) 1 (0.3%)
3 226 (70.6%) 28 (8.8%) 20 (6.3%) 46 (14.4%)

Table 5. Count and proportion (in parentheses) of responses including
either 1+ individuating size modifiers, 1+ overall size modifiers,
both, or neither. Statistics below are not based on these raw numbers,
but on total number of responses per participant that include individuat-
ing or overall.

Examples of normalized responses along with corresponding modifier types are given in

Table 4. Table 5 provides the counts and proportions of responses that included an

individuating size modifier, an overall size modifier, both, or neither for each

experiment.

H1: When a single dimension differs between a referent object and another

object of the same type, an individuating size modifier will be produced

more often than an overall size modifier.

We do not see a strong trend to include individuating size modifiers, with such mod-

ifiers occurring in an average of 8.4 responses per participant (168 responses total; 160

with only individuating, 8 with both), compared to an average of 6.1 responses per

participant (122 responses total; 114 with only overall, 8 with both) containing an

overall size modifier. The difference is not significant (t = 1.382, df = 19, p = 0.183).3

3In Study 2, with a larger set of participants, this trend is significant.
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H2: When two dimensions differ in the same direction between a referent

object and another object of the same type, an overall size modifier will

be produced more often than an individuating size modifier.

We find a strong trend to include overall size modifiers, with such modifiers occurring

in an average of 11.3 responses per participant (226 expressions total; 211 with only

overall, 15 with both). individuating size modifiers occur in an average of 5.4

responses (108 expressions; 93 with only individuating, 15 with both). The difference

in this distribution is significant (t = �4.914, df = 19, p < .001).

H3: When two dimensions differ in opposite directions between a referent

object and another object of the same type, an individuating size modifier

will be produced more often than an overall size modifier.

We find that when two dimensions differ in opposite directions, individuating size

modifiers are chosen in an average of 12.3 responses per participant (246 expressions

total; 226 with only individuating, 20 with both), while overall size modifiers

are chosen in an average of 2.4 responses (48 expressions total; 28 with only overall,

20 with both). The difference in this distribution is significant (t = 8.866, df = 19,

p < .001).

Based on these results, we can confirm Hypotheses 2 and 3. Overall size modifiers

tend to be used when both axes are different from a comparator in the same direction,

and individuating size modifiers tend to be used when both axes are different from a

comparator in opposite directions. Results are significant at ↵ = .01. We cannot reject

a null hypothesis in favor of Hypothesis 1; we do not see a significant difference in the

distribution of size modifier types when a single axis is different between a target and a

comparator. Further factors that may be affecting participant responses are discussed in

the next section.

4.3.4. Post-Hoc Analysis. I have illustrated some basic principles of how people

use size in reference. However, these experiments also provide much richer information
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on how people use size. One immediate question these findings leave is whether it is

common to include two individuating modifiers, each referring to a separate axis, when

the objects have differences of degree, different polarities across dimensions (Experiment

3). This occurs in a minority of responses (96 responses; mean per participant = 4.8),

while it is significantly more common (224 responses; mean = 11.2) to include just

one individuating size modifier, an overall size modifier, or neither (t = �4.292,

df = 19, p < .001).

We can also confirm the findings in Hermann and Deutsch (1976). Based on responses

to Experiment 2 and Experiment 3, in conditions where there is a large difference and

a small difference (h++/w+, h+/w++, h++/w-, h-/w++, h- -/w-, h-/w- -, h- -/w+,

h+/w- -), if an individuating size modifier is chosen, that modifier will refer to the

larger difference more often than the smaller difference (mean for large difference = 3.4;

small difference = 2.6, t = 3.629, df = 38, p < .001).

4.3.5. Discussion. This data supports the idea that a difference along two axes in

different directions corresponds to size modifiers like “tall” and “thin”, and a difference

along two axes in the same direction corresponds to size modifiers like “small” and “big”.

The majority of the data comports with the algorithm sketched in Figure 3, however,

this data are probabilistic; the algorithm is not. Assigning probabilities to each of the

conditional statements may help to better capture how people use size.

These experiments have also shed some light on some of the other factors that may affect

the selection of size modifier. One trend that emerges in the data is the relationship

between the selection of individuating or overall size modifier and the ratio between

the height and width of the target object itself. Although I did not design the study to

test this aspect, the data indicate that the closer the object is to a square shape, e.g., the

smaller the difference between height and width, the more likely participants are to use

an overall size modifier like “big” or “small”. Figure 5 illustrates this trend, where the

x-axis is the ratio between the larger axis (height or width) and the smaller axis (height
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A. B.

Figure 5. Count of overall size modifiers for different height/width
ratios in Experiment 1 (A) and Experiment 2 (B), with linear regression.
Ratios shown are for the largest axis divided by the smaller axis.

or width) for each stimulus, and the y-axis is the number of responses to the stimulus

that include an overall size modifier. In the data from Experiment 2, this trend is

quite strong, r2 = 0.95 (p < .001). Across conditions with only height or width differing

from the comparator object (Experiment 1) – the conditions where we did not see a

tendency to use overall size modifiers – there is also a trend, r2 = 0.57 (p < .001).

Further testing is necessary to examine this effect.

This suggests that the selection of individuating versus overall size modifier may

be influenced by the difference in height and width from the comparator object as well as

the difference between height and width of the target object itself. Individuating size

modifiers may be used when only one axis of the target is different from the comparator,

however, as the axes of the target itself converge in size, there is a marked increase in

preference for overall size modifiers.

We also see a preference to use height modifiers over width modifiers, across the three

experiments (mean for height = 6.3, width = 4.7; t = 4.409, df = 59, p < .001). This

may reflect that the objects are presented side by side, their heights directly comparable.

This brings to light another facet of how the dimensional properties of objects may be

reasoned about in a computational model, taking into account a target object’s position

with respect to a comparator when selecting a size modifier type.
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Another possible factor in this trend concerns the confound of type. Different types have

different ratios, and also different collocation patterns. Some of these observations may

be an artifact caused by the fact that, e.g., “square brownie” is a more common collocation

than “square book”, and brownies have a size ratio which is close to 1. However, I illustrate

in Study 3 that an algorithm that partially uses aspect ratio to decide size modifier type

performs reasonably well; the effect that ratio has should be examined further in future

work.

4.3.6. Implications for Study 2. This study suggests that the selection of size

modifier when referring to real world objects in the presence of another object is influ-

enced by at least two factors:

(1) Whether one or both axes differ from a comparator.

(2) Which axis is the most different from a comparator.

And may be influenced by two further factors:

(1) The location of the target object relative to the comparator.

(2) How similar in size the two axes of the target object are.

With a large enough corpus, we can explore these factors as features in a machine learning

approach, and see how well they can predict the kind of size language that people use;

this gives us two possible ways to predict size modifiers, via a hand-written algorithm

or a classifier, and we can see how each does.

Study 2 examines such a machine learning approach. I scale-up the experiments from

this study, expanding to 414 participants. This produces a large corpus of size-denoting

expressions, a reasonable enough size to begin training a statistical model. I further add

a visual front-end, reading measurements of segmented objects from images; and explore

speaker variation, a key concern in generating natural reference.
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4.4. Study 2

Study 1 isolated some of the features that may be useful in predicting the size language

the speakers will use. The next step is to see if we can actually predict that kind of size

language that speakers will use based on these features. I find that we can. The corpus

from Study 1 becomes the development corpus for Study 2; I train and test on data from

a new, larger set of participants.

The last study used images of objects to elicit participant responses. These same images

are now used in this study as input to an object segmentation algorithm, and I compare

how well we can predict speakers’ behavior using the real world measurements of the

pictured objects and the image pixel-based measurements. We will see that real world

measurements are the best predictors of modifier choice, suggesting that people infer real

world size features from images. However, automatically extracted pixel measurements

do perform relatively well at predicting modifier choice, offering a potential connection

between computer vision and natural language. When speaker identity is taken into

account, modifier choice can be predicted with even greater accuracy (around 75%), and

the difference between automatically extracted and real world measurements is no longer

significant.

The input to the model in this study is therefore the height and width of each object,

and the output is the type of size modifier to generate. The size types predicted include

individuating size modifiers, corresponding to surface forms such as “tall” and “thin”,

overall size modifiers, corresponding to surface forms such as “big” and “small”, and

a type for expressions without size modification (e.g., “the square brownie”).

I compare inputs to the model based on real world measurements, image pixel mea-

surements extracted by hand, and image pixel measurements extracted using the semi-

supervised SIOX algorithm (Friedland et al., 2005). The semi-supervised approach con-

nects modifier choice to the output of an image processing/computer vision technique

known as object segmentation, providing a possible link between natural language and
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computer vision. We can see that this approach works well, with an accuracy of 64.95%

on unseen test images, but does not perform as well as the models built from real world

measurements, which reach 69.44% accuracy. By adding speaker label as a model fea-

ture, accuracy from all models improves above 75%, and the difference between the semi-

supervised pixel-based measurements and the real world measurements are no longer

significant.

I use a decision tree classifier in order to visualize how different features affect the selection

of size type. I looked at a range of different models (support vector machines, Naive

Bayes classifiers), but found decision trees to perform the best on the development data.

Some of the features that emerge with high information gain in these models may be

useful in a hand-coded REG algorithm, and I walk through these details in the Results

section. The trees built with speaker label also provide a concrete model of speaker

variation for this task.

This study therefore makes three primary contributions: (1) a connection between the

visual features of a scene and the generation of natural size language; (2) an exploration of

visual features that may be useful in further work on human-like REG; and (3) a model

of speaker-dependent variation for the size attribute. Both the images and elicited

expressions are available at:

http://www.m-mitchell.com/corpora/size_corpus/

4.4.1. Experiment. The design of the elicitation part of this study is identical to

the design in Study 1, but scaled up for results from an additional set of 414 participants.

I use the same set of objects as in Study 1.

As in Study 1, for each expression, I annotate the modifiers as picking out individuating

axes (i) – words like “tall” and “thin” – overall axes (o) – words like “big” and “small”
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!
Figure 6. Example of original and extracted objects.

– or neither (n). Inter-annotator agreement on a randomly selected 10% of this data

is high, Cohen’s  = 0.94.4

In this study, the size modifier types serve as the class labels for each image-based feature

vector in the training data. The full list of size-denoting words in this study for each

class label is given in Table 6.

Label Count Vocabulary
individuating 3307 breadth, broad, deep, elongated, fat, flat, height, high,

length, long, low, narrow, short, skinny, slender, slim,
squat, stout, tall, thick, thin, wide, width

overall 2614 big, large, little, shrunk, slight, small
neither 703 - -

Table 6. Root words for size modifier labels.

4.4.2. Object Segmentation. In addition to the measurements of the real height

and width of the objects, I measure the objects’ height and width in image pixels. I

also extract such information using the SIOX algorithm (Friedland et al., 2005), a semi-

supervised method for object segmentation. I explain this algorithm briefly here.

The input for the SIOX algorithm consists of three user specified regions of a given image:

known background, unknown region, and known foreground. To notate each region, I

manually outline a general selection of the location of each object. The outer region of

this selection becomes the known background, and the inner region the unknown region.

4729 size modifiers were compared for the agreement score; 5 modifiers only labeled by one annotator
are excluded.



Chapter 4.4 Page 109

By selecting (brushing over) parts of the object, I specify the known foreground. Both

known regions are then used in a classification task to identify which sections of the

unknown region are background and which are foreground. The resulting output is an

outline of the segmented object, separated from the surrounding background.

I then store each of the segmented objects as separate images. With this in place, an

image processing tool can be used to extract pixel height and pixel width of each object

image. I use conjure for this, a command-line based program implemented within

ImageMagick (Cristy, Thyssen, & Weinhaus, 2011). Figure 6 shows an example of an

image and extracted objects.

4.4.3. Machine Learning. Each of the 96 images represent an <object, condition>

stimulus with associated features. There are a variety of size-based visual features avail-

able from the heights and widths extracted from the input images, listed in Table 7.

These include Referent Features, features of the target object alone; Comparator

Features, features of the comparator object on the left; and Comparison features,

features that store the difference between the referent and comparator. These features

may serve as the training/testing data in a machine learning approach where the class

label in each instance corresponds to the size type (i, o, or n) used by a particular

speaker for a particular image. The classification problem is therefore to use the visual

features to predict the size type used by each speaker for each image.

I use C4.5 decision tree classifiers as implemented within Weka (Hall et al., 2009) with

default parameter settings. Performance is evaluated using cross-validation, where the

set of results from all speakers for each <object, condition> stimulus (each image) is

tested against a model trained on all other objects and conditions. Each cross train/test

makes up a testing fold, totaling 96 testing folds.

4.4.4. Results. Results are presented in Table 8, listed as the percentage of correct

predictions, and in italics, the percentage of testing folds where the predicted type was
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# ID Description
Referent Features
1 type object type
2 ry height of target
3 rx width of target
4 rrat target height:width
6 ryrxdf target height - target width
5 rsurfar surface area of target
Comparator Features
7 dy height of comparator
8 dx width of comparator
9 drat comparator height:width
10 dydxdf comparator height - comparator width
Comparison Features
11 ydf target height - comparator height
12 xdf target width - comparator width
13 ratdf target ratio - comparator ratio

Table 7. Visual features extracted from images.

found in the majority of responses. I compare results based on the three kinds of visual

measurements:

(1) Automatically extracted image measurements (Auto): the pixel measurements

extracted from the segmented objects within the pictures.

(2) Gold-standard image measurements (Gold): pixel measurements measured by

hand from the objects within the pictures.

(3) Real World measurements (Real): the actual measurements of the pictured ob-

jects.

Accuracy is computed as the number of correct classifications divided by the number of

classified instances, over all testing folds. If n is a testing fold in the set of testing folds

N, t
i

is the true class label of each instance i, and p
i

is the predicted class label, then:
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Auto Gold Real Oracle Baseline
Without 64.95% 62.80% 69.44% 75.88% 49.93%
Speaker 65.63% 65.63% 75.00% 88.54% 47.92%
With 75.33% 77.20 % 76.95% 100% 64.05%

Speaker 91.67% 96.88% 95.83% 100% 71.88%

Table 8. Accuracy across folds.

Accuracy =

X

i2n2N

(p
i

= t
i

)

X

n2N

|n|

Accuracy based on the automatically extracted pixel measurements indicates how well

the system connecting object segmentation to reference generation performs. Accuracy

based on gold standard and real world measurements provide a comparison indicating

how well the system performs when the size data are provided manually.

The system connecting object segmentation to natural reference generation (Auto) per-

forms relatively well, predicting 64.95% of response types. The comparison pixel mea-

surement system (Gold) predicts 62.80% of response types, which is not significantly

different from the automated approach (paired t-test, p = 0.4104).

Interestingly, even though real world measurements may not be clear in photographs,

we can see that classification based on these measurements performs significantly better

than classification based on the manually or automatically derived pixel measurements

(paired t-test, real vs. auto: p = 0.0363, real vs. gold: p = .0188). This suggests that

people are good at reasoning about size in the real world from a two-dimensional image,

and the connection between what a computer can see and what it can talk about may

be improved with more sophisticated techniques for geometric reasoning.

Since all testing instances in each fold are identical, differing only in class label (the size

type), I implement an oracle method to understand the upper bound of this task. This

predicts the most common size type in each testing fold, which yields 75.88% accuracy.

The results can be compared against a majority baseline that predicts the most common
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type from the training data in each fold. Without speaker, the majority class is always

i, which is used in 3,307 of the 6,624 instances; 2,614 are o, and 703 are n.

Figure 7 A shows an Auto model built over all data, without speaker labels. We can see

that dydxdf, the feature for the difference between the comparator’s height and width, is

selected as having the highest information gain. In other words, the learning approach

finds that first splitting up the data based on the value of this feature is the optimal way

to distinguish between different size choices; when the model sees a set of visual features

for a size choice it has to guess, it will first check whether dydxdf is less than or equal

to -47 pixels.

Intuitively, the feature dydxdf chosen here with the highest information gain here does

not make a lot of sense; why the difference between a comparator’s height and width

would be preferred over something for the referent is not immediately clear. However,

it is important to note that the fact that the model finds a particular feature useful to

predict human behavior does not mean that that feature is used by people themselves. In

particular, information gain tends to prefer variables with a lot of values in the observed

data, and this may explain some of the splits it makes. It may also be the case that the

model is over-fitting, and this motivates us to remove features in the next section.

In this model, the features related to ratio appear as strong predictors of size type. Both

the height-to-width ratio of the referent object and the difference in height-to-width ratio

between the referent and comparator object are used early on in the trees. This means

that features of the target referent itself, as well as features derived from the comparison

between referent and comparator, are useful in predicting which label is selected. This

suggests that there may be a relationship between the selected size type and how close

the height and width of the target object are to one another – for example, when the

dimensions are far apart, individuating size modifiers may be preferred, resulting in

expressions with words like “tall” and “thin”, but when closer together (more square-

shaped), overall size modifiers may be preferred, resulting in expressions with words
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like “big” and “small”. However, as discussed in the last paragraph, what a model finds

useful to predict how people refer does not necessarily reflect what a person finds useful

when referring. Further testing is necessary to understand if any of the behavior of the

decision trees is reflective of human use of these features.

It is interesting that the models are not composed entirely of comparison features, but

incorporate features of the referent in isolation, such as its ratio and width. This runs

counter to much work in REG, where algorithms usually select features of a referent

object based solely on comparison with features of surrounding objects (discussed fur-

ther in Chapter 2). This data suggest there may also be a benefit in reasoning about

the relationship between individual features of the referent object itself before surface

realization.

4.4.5. Speaker-Specific Reference Generation. I next add speaker label as a

feature in the data and evaluate how well the classifiers perform. This provides a way to

distinguish between instances within each testing fold. The trees built using this feature

also provide a model of speaker variation.

As shown in Table 8, accuracy improves, and this is significant for all three learned

models (Auto, Gold, and Real, p < .001). These models outperform a baseline that

predicts the majority size type used by each speaker based on the training data in

each fold. The Auto models predict 75.33% of the observed size types, and predict the

majority type for a testing fold 91.67% of the time. This is not significantly different

from the predictions made by the Real models (paired t-test, t = 1.685, p = 0.095). The

resulting trees have very low depth, tuning decisions to each speaker and then using a

small set of individualized features to decide the final size type (Figure 7 B).

4.4.6. Discussion. In this study, I examined how well a small set of objective visual

features perform at predicting the type of size modifier selected to refer to everyday ob-

jects. I include the size-based features of surface area and height-to-width ratio suggested

by Roy (2002) to be correlated with distinct size adjectives. In contrast to earlier work
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A.
dydxdf <= -47
| ratdf <= -0.097
| | xdf <= 4
| | | type = books: O
| | | type = boards: O
| | | type = brownies: O
| | | type = sponges: I
| | xdf > 4
| | | ydf <= 7: I
| | | ydf > 7: O
| ratdf > -0.097
| | ratdf <= 0.143
| | | rrat <= 0.705
| | | | dydxdf <= -49
| | | | | rrat <= 0.688
| | | | | | rsurfar <= 41004
| | | | | | | ydf <= -14: O
| | | | | | | ydf > -14: I
| | | | | | rsurfar > 41004: O
| | | | | rrat > 0.688: I
| | | | dydxdf > -49: N
| | | rrat > 0.705: O
| | ratdf > 0.143
| | | ratdf <= 0.152: I
| | | ratdf > 0.152
| | | | rx <= 177: O
| | | | rx > 177
| | | | | rx <= 238
| | | | | | ydf <= 6: O
| | | | | | ydf > 6
| | | | | | | ratdf <= 0.245: N
| | | | | | | ratdf > 0.245
| | | | | | | | ydf <= 22: N
| | | | | | | | ydf > 22: I
| | | | | rx > 238: O
dydxdf > -47: I

B.
dydxdf <= -47
| rrat <= 0.674
| | spkr = A2E: 2d
| | spkr = A2J
| | | ryrxdf <= -113: 1d
| | | ryrxdf > -113: 2d
| | spkr = A2F: 1d
| | spkr = A32
| | | rrat <= 0.561: 2d
| | | rrat > 0.561: 1d
| | spkr = A2T: 1d
| | spkr = AW5: 2d
| | spkr = A37: 2d
| | spkr = A3G: 1d
| | spkr = A94
| | | ryrxdf <= -113: 1d
| | | ryrxdf > -113: 2d
| | spkr = A3U
| | | dx <= 205: N
| | | dx > 205
| | | | ydf <= 8: I
| | | | ydf > 8: O
| | spkr = AN3
| | | xdf <= 35: 2d
| | | xdf > 35: 1d
| | spkr = A34: 2d
| | spkr = A1I: 1d
| | spkr = A35: 2d
| | spkr = A2S
| | | dydxdf <= -126: 1d
| | | dydxdf > -126: 2d
| | spkr = A19
| | | y <= 152: 1d
| | | y > 152: 2d
| | spkr = A3I: 1d
| | spkr = A18: 2d

Figure 7. Pixel-based decision tree without speaker labels (A) and a sec-
tion of pixel-based tree with speaker labels (B). Decision trees are different
across folds.

on machine learning for generating object descriptions, the images are of real objects,

the features do not rely on detailed annotation,5 and the set of predicted classes is kept

small. This narrows the machine learning task from earlier related work and avoids data

sparsity issues. At the same time, it provides a relatively clear connection between the

size aspects of a scene, such as the height and width of a target object, and natural

referring expression generation.

5In the semi-supervised approach I discuss, the features are extracted from images, but the ability
to recognize such features in a scene is limited by how well an object segmentation algorithm works; I
control this aspect by looking at clear, uncluttered scenes.
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We see that that generating human-like reference to visible, real world objects is possible

by reconstructing the problem of REG: Rather than analyzing the size property as

a single dimension in feature space (<size:large>), it can be analyzed as a multi-

dimensional property (<size:[height:y width:x ratio:z...] >). In this way, output

from a visual analysis may serve as input to a model that selects the most reasonable

value (including neither) for the given attribute.

Without speaker labels, the models built on real world measurements perform better than

the models built on pixel image measurements. This suggests that a connection between

language generation and object segmentation can be improved by adding a mechanism

to reason about how the two-dimensional image space maps to a three-dimensional real

world space.

The models built here point the way to further psycholinguistic work, such as research

uncovering other factors that affect the modifier choice made by people (perhaps, for

example, cognitive load). Whether the features selected by the decision trees reflect the

features humans use when referring to size is an area for future research.

4.4.7. Implications for Study 3. We have seen that we can do reasonably well

at predicting among broad size types using a machine learning approach. How well a

hand-written algorithm can compare, and whether such approaches can predict more

fine-grained size types, remains to be seen.

In the next study, I therefore expand the kinds of size language the models predict, spec-

ifying more detailed classes within the two broad size types and exploring further size

features. I find that we can successfully predict even finer-grained size types, and the

process of refining the hand-written algorithm introduced in Study 1 suggests further fea-

tures for the machine learning approach introduced in Study 2. Both the hand-written

algorithm and machine learning approach perform comparably, and reach high preci-

sion/recall when tested in an entirely new domain.
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Type Axis Polarity

Individuating

(<ind, y>, +) y +
(<ind, y>, -) y -
(<ind, x>, +) x +
(<ind, x>, -) x -

Overall
(<over>, +) x, y +
(<over>, -) x, y -

Table 9. Size types.

4.5. Study 3

Study 1 established that people use size modifiers in predictable ways, isolating features

that influence the selection of size modifier type. In Study 2, I began generating different

size types from these features, and found that the generated types matched the type used

by actual speakers to the same stimulus in well over the majority of cases.

However, the size types I examined were quite broad: Individuating size modifiers,

which refer to at least one axis, and overall size modifiers, which refer to the overall

size of the object. In this study, I further refine the broad size types, breaking them

into types corresponding to both polarity and axis. Words like “tall” and “big” denote

a positive polarity (+), and words like “small” and “thin” denote a negative polarity (-).

Words like “tall” and “short” may be used to refer to difference along the y-axis of an

object, and words like “fat” and “thin” may be used to refer to differences along the x-

axis. The six abstract size types based on these distinctions are listed in Table 2, and a

few examples of corresponding surface forms are listed in Table 10. These types may be

used to generate different surface realizations from the same underlying semantic form,

for example, (<ind,y>, -) may be used to produce adjectives (“the short box”), relative

clauses (“that is shorter”), and prepositional phrases (“with less height”).

Using this more fine-grained distinction, I predict modifiers in two domains: The Size

Corpus established in Studies 1 and 2; and a new domain, the Craft Corpus, discussed

in Chapter 3. Since the Size Corpus influenced the design of the hand-coded algorithm
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Type Examples
(<ind, y>, +) taller thicker longer
(<ind, y>, -) shorter thinner short
(<ind, x>, +) longer thicker wider
(<ind, x>, -) thinner shorter narrower
(<over>, +) larger bigger big
(<over>, -) smaller small smallest

Table 10. Top three surface forms for each size category in the Size Corpus.

and the features selected in the machine learning approach, it is interesting to see how

well we can predict size types in an entirely new domain. I find that we can do quite

well, with above 80% precision and recall.

4.5.1. The Size Algorithm. Study 1 introduced the beginnings of a hand-coded

size generating algorithm, but the experiments suggested further features that should

be taken into account when generating size. In particular, I found that there may be

an effect of aspect ratio on the selection of modifier type. This probabilistic finding can

now be incorporated into a full size-generating algorithm, which we detail in Figure 9.

This algorithm is a model of the findings suggested from the first study, listed again in

Figure 8, and is used when the following preconditions are met:

(1) There is a target referent and one or more comparator objects

(2) Each comparator has two dimensions that can be compared with the target

referent’s dimensions

As input, the algorithm takes the width and height of the referent (rx, ry) and the width

and height of the comparator of the same type or average of the distractors of the same

type as the referent (dx, dy). The algorithm outputs one of the size types listed in Table

2.

Lines 3 and 6 of SizeMod model the first finding in Figure 8, creating a structure to

generate an overall size modifier (‘over’) with the appropriate polarity. Lines 4 and
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1. When two dimensions differ in the same direction
between a referent object and another object of the
same type, an overall size modifier will be produced
more often than an individuating size modifier.

2. When two dimensions differ in opposite directions
between a referent object and another object of the
same type, an individuating size modifier will be
produced more often than an overall size modifier.

3. The closer the aspect ratio of an object, the more
likely participants are to use an overall size modifier.

Figure 8. Size findings from Study 1.

7 create a structure to generate an individuating size modifier (‘ind’) referring to the

axis with the largest difference, with the appropriate polarity. Here, the modifier type

selection reflects the second finding in Figure 8, while the selected axis is chosen based

on the conclusions of Hermann and Deutsch (1976).

Lines 5, 8, 9, and 10 are all cases where one axis is different from the comparator and one

axis is not. In these cases, following the third finding in Figure 8, I calculate the ratio

of difference between the axes (CalcRatio). This is a stochastic process that models

speaker preference for a modifier type as a function of the object’s aspect ratio. The

closer the ratio of the x / y axes is to 1, the more likely the algorithm is to generate an

overall size modifier.

Line 11 handles the case where both the referent and comparator have the same height

and width. In this case, no size modifier is generated.

The Size Corpus from Study 1 and Study 2 provides information about size when there is

a single comparator of the same type, however, in practice, a referent may be competing

against several comparator objects. To address this, the algorithm must compare a

referent’s height and width against a larger set of heights and widths. A straightforward

way to apply such a comparison is to take the average height and width of the items in

the contrast set. Such an approach has also been suggested by work in vision, which has

shown that observers know the mean size of a collection of homogeneous objects quite
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Input: Referent height, width (ry, rx)
Average height, width for comparators of referent’s
type (dy, dx).

Output: Size modifier type (See Table 2).

SizeMod(rx, ry, dx, dy):
1. axes = <rx, ry, dx, ry>
2. case (mod, pol) of:
3. ry > dy and rx > dx: (<‘over’>, 1)
4. ry > dy and rx < dx: LargestDimDiff(axes)
5. ry > dy and rx == dx: (CalcRatio(axes, ‘y’), 1)
6. ry < dy and rx < dx: (<‘over’>, 0)
7. ry < dy and rx > dx: LargestDimDiff(axes)
8. ry < dy and rx == dx: (CalcRatio(axes, ‘y’), 0)
9. ry == dy and rx > dx: (CalcRatio(axes, ‘x’), 1)
10. ry == dy and rx < dx: (CalcRatio(axes, ‘x’), 0)
11. ry == dy and rx == dx: (None, None)
12. return (mod, pol)

LargestDimDiff(<rx, ry, dx, dy>):
axis = axis with largest difference between r and d (x or y)
pol = direction of difference (0 or 1)
return (<‘ind’, axis>, pol)

CalcRatio(<rx, ry, dx, dy>, axis):
if ry > rx: greater = ry, smaller = rx
else: smaller = ry, greater = rx
p = (greater/smaller) - 1
if p > 1: p = 1
v = round(100 * p)
i = random integer between 1 and 100
if i > v: mod = <‘over’>
else: mod = <‘ind’, axis>
return mod

Figure 9. Size algorithm. 1 is used to designate a positive polarity (+)
and 0 a negative polarity (-).

accurately but retain little information about the size of the individual objects (Ariely,

2001). Since size is more common when an item of the same type is in the scene (Brown-

Schmidt & Tanenhaus, 2006), it may be suitable for the algorithm to compare size using

the height and width average of other items of the same type. This also provides a simple
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way to model the size expectations of the referent relative to similar items. I do not test

how well this approach works with size outliers; this is a clear area for future work.

4.5.2. Machine Learning. One of the strengths of applying machine learning to

this task is that it may be constructed as a series of binary classification problems, where

a model is built for each size type. This allows more than one modifier to be generated for

each referent, while avoiding issues of data sparsity inherent in training every combination

of size as a separate class. The machine learning approach therefore has functionality

that the hand-coded size algorithm does not have; it is able to predict sets of modifiers

for a referent instead of being limited to a single modifier. This flexibility is a benefit to

the machine learning approach over the hand-coded algorithm, and I return to this issue

in Section 4.5.5.

To build the models, each expression in the Size Corpus from Study 2 was annotated to

mark the size modifiers and their types (Table 2). A random selection of 10% of the

dataset was checked for inter-annotator agreement. The annotators found that many of

the annotated brownie references picked out the z-axis, the third dimensional axis point-

ing inwards in the picture; although the images are two-dimensional, both annotators

reasoned about the three-dimensional shape to resolve references to all three axes. This

is probably especially true for the brownies stimuli due to the angle of the camera, where

differences in height may appear to be along the z-axis. In future work, it would be

better to control this aspect, perhaps making only two dimensions visible. For this data,

I group those modifiers for z- and y-axes together. Inter-annotator agreement was quite

high at  = 0.94.6

As in Study 2, the models are constructed using C4.5 decision tree classifiers as imple-

mented within Weka (Hall et al., 2009), with default parameter settings. I did not find a

significant improvement in accuracy on the development set with different pruning meth-

ods or normalization. Each feature vector used by the models lists visual size features
6729 size modifiers were compared for the agreement score; 5 modifiers only labeled by one annotator

are excluded.



Chapter 4.5 Page 121

# ID Description
Referent Features

1 ry target height
2 rx target width
3 rrat target height:width
4 ryrxdf target height - target width
5 rsurfar surface area of target
Comparator Features

6 dy comparator height
7 dx comparator width
8 drat comparator height:width
9 dydxdf comparator height - comparator width
10 dsurfar surface area of comparator
Comparison Features

11 ydf target height - comparator height
12 yratio target height / comparator height
13 xdf target width - comparator width
14 xratio target width / comparator width
15 ratdf target ratio - comparator ratio
16 discx 1 if rx > dx; 2 if rx == dx; 3 if rx < dx
17 discy 1 if ry > dy; 2 if ry == dy; 3 if ry < dy

Table 11. Expanded visual features for each expression, including fea-
tures in Table 7. Features 16 and 17 mirror the size algorithm’s compar-
isons.

Type
<ind, y> <ind, x> <over>
+ - + - + -

Observed 22 10 3 0 51 43

Table 12. Frequency of observed size modifier types in the Craft Corpus.

that characterize each image, such as the size of the referent and comparator’s axes, and

differences between the two. I also provide a set of features reflecting the comparisons

made in the hand-coded algorithm. The feature set is listed in Table 11.

4.5.3. Testing Corpus. To evaluate how well the models perform in a new domain,

I use the Craft Corpus from the experiment in Chapter 3. The 2010 experiment is

a different task, and differs in several critical ways from the 2011 experiment: (1) It
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was conducted in-person, using three-dimensional objects; (2) the referring expressions

were produced orally; (3) there were many different objects in the scene, and (4) the

objects had a variety of different visual properties: values were different for texture,

material, color, sheen, etc., as well as size along all three dimensions. Subjects

referred to objects as, for example, “the longer silver ribbon”, and “small green heart”.

Table 12 lists the frequency of each observed size type in this corpus.

As discussed above, I adapt the size algorithm to the new domain by taking the average

height and width of all comparators of the same type, and comparing the referent against

this average. The implications of this are three-fold: (1) Comparisons are limited to those

items of the same type; (2) comparisons are limited to those items in an immediately

surrounding group; and (3) comparisons are against a general ‘gist’ of the surrounding

scene, instead of individual measurements.

To adapt the classifiers to the new domain, I remove all direct measurement features

from training and testing; work on the development set suggests that including all listed

features achieves the best precision and recall when training and testing in the same

domain, however, when expanding to a new domain, certain features overfit the model to

the development domain. This includes features 1 (ry, target height), 2 (rx, target width),

4 (ryrxdf, target height - width), 6 (dy, comparator height), 7 (dx, comparator width),

9 (dydxdf, comparator height - width), 11 (ydf, target height - comparator height), 13

(xdf, target width - comparator width). Removing these features allows the classifiers to

build models from relative measurement features alone, and helps minimize overfitting

to any one domain.

4.5.4. Evaluation. Before testing on the new domain, I test how well the two ap-

proaches do on the Size Corpus. The construction of the size algorithm was informed

by this corpus, and so this provides a measure of how well the algorithm does in the

domain for which it was designed. The decision trees are evaluated in this domain using

leave-one-out validation, where the set of expressions for a referent containing at least
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discy <= 1: no
discy > 1
| discx <= 1: no
| discx > 1
| | drat <= 1
| | | xratio <= 0.909: yes
| | | xratio > 0.909
| | | | discy <= 2: no
| | | | discy > 2
| | | | | rrat <= 0.455
| | | | | | xratio <= 0.910: yes
| | | | | | xratio > 0.910
| | | | | | | rrat <= 0.413: yes
| | | | | | | rrat > 0.413: no
| | | | | rrat > 0.455: yes
| | drat > 1: no

Figure 10. Example (partial) decision tree, binary classification: Train-
ing on Mechanical Turk data, direct measurement features removed, model
for inclusion of (<over>, 0). Values in cm.

one size modifier is tested against the models trained on the size expressions for all

other referents. An example tree is shown in Figure 10. Features developed from the

hand-coded algorithm (features 16 and 17 in Table 11) appear to have high discriminative

utility in the trained models.

Unlike the machine learning approach, the size algorithm generates no more than one

size type for each referent, although participants may produce several. To understand

the upper bound of both approaches, I therefore implement an oracle method for the

size algorithm (Oracle
alg

) that always guesses the most common size type for each

referent, and an oracle method for the classifiers (Oracle
tree

) that always guesses the

most common set of size types for each referent.

To understand the lower bound, I implement a baseline method that guesses the most

common size type and most common set of size types in the training data for each

testing fold. The most common set of size types across folds contains a single modifier,

making the baseline of the two approaches equivalent.

I evaluate the systems using precision and recall. Since I am comparing the set of

predicted modifiers with the set of modifiers that a description contains, it would have

been possible to use the Dice metric (Dice, 1945), as has often been done in evaluations
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Model
Mturk Crafts
precision/recall precision/recall

Baseline 25.7% / 24.5% 16.4% / 16.4%
Oracle

alg

80.5% / 72.7% 89.1% / 89.1%
Oracle

tree

79.5% / 76.0% 89.1% / 89.1%
Size

69.7% / 63.4% 81.3% / 81.3%
Algorithm
Decision

65.4% / 65.7% 80.5% / 81.3%
Tree

Table 13. Precision and recall for models, testing on expressions that
contain size. The size algorithm is averaged over 5 iterations.

of REG algorithms (Gatt & Belz, 2008). But Dice does not distinguish between recall

(i.e., modifiers that are not predicted but should have been) and precision (i.e., modifiers

that are predicted but should not have been), collapsing both of these into one single

metric. For my purposes, it will be more informative to separate precision and recall.

Given:

O
e

= The set of size modifier types observed in an expression e

P
r

= The set of size modifier types predicted for a referent r

E
r

= The multiset of expressions for a referent r

R = The multiset of expressions E
r

for each test referent r

Precision =

X

e2Er2R

|P
r

\O
e

|
|P

r

|
|R|

Recall =

X

e2Er2R

|P
r
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e

|
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e
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Table 13 shows how well the different systems perform. Testing instances are limited

to those that contain a size modifier. The second column lists precision and recall on

the Size Corpus. The difference in results between the two systems is not statistically

significant.
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The third column of Table 13 lists how well the systems do when tested on the new

domain, the Craft Corpus. The precision and recall values here are identical for the

systems that generate one modifier because almost all size expressions in the Craft

Corpus contain just one modifier. This also allows a more direct comparison between the

two systems, as both the lower bounds (Baseline) and upper bounds (Oracle) of the

two systems are equal.

As discussed in Section 4.5.3, both systems are adapted slightly for the new domain.

The size algorithm uses the height and width average of items that are the same type

as the referent. The decision trees are trained on the full Size Corpus, and when the

models are built from all of the features listed in Table 11, precision/recall on this task

is 44.1%/48.1%. However, once the classifiers are adapted to the subset of relative mea-

surement features, there is a large jump for both measures.

The two systems perform similarly. The size algorithm achieves just over 81.3% precision

and recall, while the machine learning approach reaches 80.5% precision and 81.3% recall,

and the differences between the two methods are not statistically significant. Oracle

accuracy is higher by around 8%, suggesting that both systems are reasonable, and

further work may want to finesse the kinds of size information that each uses.

4.5.5. Discussion. It is interesting that both systems perform better in the new

domain. Both were built based on typed reference to one of two rectilinear solids in a

two-dimensional photograph, and still produce reasonable output to spoken reference to

one of several three-dimensional objects with different shapes in a much more descriptive

task. The two systems likely perform better on the Craft Corpus than the one they were

developed on because in the Craft Corpus, almost all expressions contain just one size

modifier (only one expression had more).7

The machine learning approach does poorly when it uses the same set of features in

both domains, however, by removing those features that may lead to overfitting – the

7This was “the smallest long ribbon”, which both models fail to predict.
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direct measurements of individual objects, which vary across the different domains – it

dramatically improves in the new domain. The difference in precision and recall between

the two systems is not statistically significant, with values above 80%.

A notable difference between the two systems is that the machine learning approach can

predict any number of size modifiers, while the size algorithm is limited to predicting

one modifier (or none). The upper and lower bounds are the same for both in the

Craft Corpus discussed here, however, the classifiers’ ability to predict when several size

modifiers will be included may help extend this method in other domains.

One immediate question that arises from this work is how to move from abstract size

type to surface form. For some modifiers, this will be relatively straightforward, but for

others, e.g., using (<over>, +) to generate the phrase “the second largest one”, further

functionality must be in place to reason about individual sizes of objects in the contrast

set.

Both systems may be developed further by modeling speaker variation. As shown in

Study 2 and in previous work (Viethen & Dale, 2010), adding speaker label as a feature

within the decision tree models improves performance. Creating a more concrete way to

handle speaker variation may lead to more natural output.

In the size algorithm, speaker variation may be applied several ways. Currently, the

algorithm’s CalcRatio function decides which of the two broad size modifier classes to

generate by using a random number generator. This was implemented based on speaker

variation in cases where the aspect ratio of an object approaches 1 (Figure 8). A similar

technique may be applied throughout the algorithm, where a prior is assigned to various

decisions based on an analysis of how speakers behave. Another method could apply

slightly different versions of the algorithm to different speaker models, where some more

detailed aspects of the algorithm are varied for different speaker profiles – for example,

placing a preference on height over width within a threshold of axis size similarity.
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4.6. Conclusions and Future Work

I have presented two methods for generating size modifiers. Both utilize the dimensional

aspects of objects in a scene to decide among six broad size categories, which may be used

to inform the selection of size modifier in a realized surface string. Both work relatively

well when generating size modifiers for two-dimensional images of three-dimensional

rectilinear solids, and are extensible to a new domain of real world three-dimensional

objects with irregular shapes.

One of the next clear steps in developing the hand-coded size algorithm is to add func-

tionality for generating sets of modifiers. I would also like to explore different features

and the effect they have on the overall accuracy of the different approaches. I hope to ad-

dress modifiers that pick out specific configurations of multiple axes, e.g., “stout” may be

realized from {(<ind, x>, +), (<ind, y>, -)}. Methods for reasoning about the distance

and relative orientation between the target object and its comparators may guide which

axis is referred to, and the systems should be further expanded to real world objects by

adding mechanisms to handle a third z-axis. A better understanding of when a difference

along an axis is small enough not to be salient would help connect these approaches more

closely to a visual input, placing constraints on when the outlined cases apply.

To broaden generation to a new domain, in Section 7.5 I took the height and width

average of same-type objects. It is an open question whether this approach works well

when there are clear size outliers, and I note this for future work. It would also be useful to

use the decision trees discussed in this chapter to cluster speakers, and generate individual

speaker variation by generating from particular speaker clusters. In this approach, one

could make a tree for each speaker, and then cluster similar trees together. It may also be

useful to explore further classification approaches beyond SVMs and decision trees, e.g.,

k-nearest neighbor, which may be better at predicting size modifier preferences based on

similarly sized objects in the training data.
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I hope to address other kinds of properties of real world referents using a similar method-

ology, in particular, reasoning about the inclusion of spatial prepositions between objects.

It seems intuitive that some of the same features defining size of an object could be used

along with distance between objects to understand the perception of their spatial rela-

tions and how those relations are described; this has also been suggested in recent work,

e.g., Kelleher and Costello (2009). By further defining when different properties are

used, how distinct properties interact, and the features affecting their realization, I hope

to continue to expand the methods to generate naturalistic reference.



Chapter 5

Typicality: Shape and Material

5.1. Introduction

Consider the picture below. What is this a picture of? You may say “a dog”, or perhaps

“a golden retriever”. You may also say it is “a three-legged dog”. This can be contrasted

with references that sound considerably more marked – it seems odd to say this is “a two-

eared dog” or “a dog with a nose”. So why does three-legged sound fine, while two-eared

and with a nose do not?

This chapter focuses on the role of typicality in reference to real world objects. I test

whether changing the typicality of an object’s properties affects reference to it, and

whether we can predict how an object will be referred to by comparing its specific

attribute-values against a knowledge base of stored, typical attribute-values for the ob-

ject type. I examine this effect using the attributes of material and shape, which

commonly appear in descriptions of visible objects (see Chapter 3). This is an area that

has received little attention in work on referring expressions generation, and I hope to

make some initial conclusions that can provide a basis for further research.
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What is typical about an object is flexible and will not necessarily be identical across

participants, which makes predicting behavior based on a list of typical features prob-

lematic. However, if mental representations of typical object features do play a role

in object description, then we may be able to approximate typicality using the most

frequently named features for objects.

To establish the most frequently named features for objects, we use semantic feature

production norms. Semantic feature production norms provide a set of common proper-

ties for basic-level concepts, and are collected to explore conceptual representations such

as typicality (Rosch & Mervis, 1975) and semantics (Wu & Barsalou, 2009). We use

McRae’s norms (McRae, Cree, Seidenberg, & McNorgan, 2005; McRae, 2011) (see Table

1), which to our knowledge is the largest source of production norms to date. McRae’s

norms were collected by providing participants with 10 blank lines for each basic category

and asking them to list features for each, such as physical (perceptual) properties (how

it looks, sounds, smells, feels, and tastes), functional properties (what it is used for and

where and when it is used), and other information, such as encyclopedic facts (e.g., where

it is from).

I consider atypical values to be those not listed by any participant for the object. I group

features into the categories of shape and material, which correspond to a subset of

the “external_surface_property”/“external_component” labels in the norms (for shape)

and all of the “made_of” labels (for material). The study is primarily run on English-

speaking North Americans, the same general cultural group that established the norms.

For those features that McRae’s norms do not provide, I rely on what features were

available.

In testing typicality in a domain of real world objects, one issue that immediately arises

is the interconnectedness of different attributes. For example, the material attribute

often entails color and texture, among others. An object made of wool is often fuzzy

or rough (texture values), while an object made of wood is often tan or brown, and
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for everyday objects, tends to be smooth (color and smoothness values). Ideally,

participants would refer only to those attributes that I vary, shape or material; but

they may instead refer to interconnected attributes, calling a woolen bowl “coarse” or

“flexible”, or a plastic coin a “fake” coin.

Another issue that arises using complex objects is that of lexical choice. This is partic-

ularly clear for shape, where it may be difficult to lexicalize or describe various shape

manipulations. Coins with a flowered shape may be called “flowery” or “ruffled” perhaps

(see Figure 2); but neither of these descriptors are as common as a word like “round”,

and this may affect whether the descriptor is included. Some shape manipulations may

also be realized as a prenominal modifier (“octagonal mug”), while others may be real-

ized using a more syntactically complex postnominal modifier (“ruler with holes in it”).

This undoubtedly also affects whether or not a shape difference will be described. Further

complicating the issue is that an object’s shape is often indicated by its name (Markman,

1989; Landau & Jackendoff, 1993), and so when presented with an object with an atypical

shape, subjects may think it is a fundamentally different object from the one intended

(see Figure 1).

A further issue arises from visual saliency. Recent research suggests that material is not

available pre-attentively and is inefficient for guiding attention (Wolfe & Myers, 2010),

while shape may be much more accessible when scanning the scene. Indeed, the study

discussed in Chapter 3 suggests that shape modifiers may be preferred to material

modifiers, a conflating factor in comparing the frequency with which each attribute is

named when atypical.

Figure 1. Bowl, Sugar Bowl, Creamer, Teacup, Mug, Pitcher:
Similar objects with different shapes tend to have different names.
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Figure 2. The production of a modifier may be affected by how lexicaliz-
able or common it is. Here, an adjective like “ruffled” or “flowery” (on the
right) is less common than an adjective like “round” (on the left).

Such issues make isolating individual object attributes in a controlled study much more

difficult than it may seem at first blush, and may be part of the reason why studies

using a range of complex real world objects are few and far between. In this chapter,

I examine typicality in the interplay of both the material and shape attributes, and

find that subjects tend to prefer atypical over typical shape values when describing

objects, but do not find strong evidence of this for atypical material values. In the

hope of informing future research in this area, I also provide a discussion of the process of

collecting materials for this study, some of the difficulties encountered, and the solutions

to them.

5.2. Background

This study follows the idea that the concepts we access when viewing an object are

informed by previous experiences we have had with other objects of the same type. Such

experiences give rise to mental representations of the object that may include exemplars,

examples of specific instances in which we have previously viewed the object before

(Medin & Schaffer, 1978; Wu & Barsalou, 2009; Frassinelli, 2010); and prototypes, a

generalized notion of what the object is typically like (Rosch, 1975; Rosch et al., 1976,

further details in Chapter 2 Section 2.2.2).

Theories of object recognition posit that the visual representation of an object is matched

to structural descriptions and functional attributes stored in long term memory; visual
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processes encode the shape, color, texture, etc., of an object to match that visual

input to an object category (Logothetis & Sheinberg, 1996; Humphreys, Price, & Rid-

doch, 1999; Riesenhuber & Poggio, 2000, further details in Chapter 2 Section 2.3). Word

production emerges from a coupling of these categorical concepts with the articulatory

motor system active during object naming (Kosslyn, 1980; Levelt, Roelofs, & Meyer,

1999).

If stored features of an object category are accessed when viewing a specific instance

of that object, then those features may influence object naming. For example, if the

material metal is a typical property of spoons, then a wooden spoon may be noticeably

“wooden”, and described as such more often than a metal spoon would be described as

“metal”.

This study tests such an intuition, presenting participants with atypically-featured ob-

jects and measuring the influence these features have on object descriptions. We will see

some evidence that typicality affects how an object is referred to, and the results suggest

further processes at play. The findings from this study may be useful to create richer,

more natural and descriptive visual descriptions.

5.3. Material Collection

In keeping with previous chapters and the goals of this thesis, I choose naturalistic,

everyday, inanimate objects for the study. The initial list of possible objects included all

inanimate objects from McRae’s norms that could fit on an experiment table, and this

set was narrowed down by availability and my abilities to control the visual properties

of the objects.

Pilot work for this study suggested that the test objects had to match as closely as

possible in color and size, while being clearly typical in one other attribute (material

or shape) and clearly atypical in the other. Without this control, color and size

attributes tended to be preferred for distinguishing the objects; this further reflects the
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idea that these two attributes are particularly salient for visual reference (cf. Chapters 3

and 4).

For example, a ruler, made of white paper (an atypical material for a ruler) contrasted

with a wooden ruler (a typical material) was called “the white ruler” rather than “the

paper ruler”. Such attribute interconnections made the process of collecting objects par-

ticularly challenging. Objects with different shapes still had to be roughly the same

size, and objects with different materials still had to be the same color. To meet these

demands, many objects had to be hand-crafted by professionals or else acquired after

sifting through and returning to several different stores, often buying objects for which

a matching test pair could not be found or created.

I aimed to sample a variety of materials and shapes, which also made finding appropriate

objects difficult – having a large subset of atypical material be clay, for example, which

is easy to manipulate and therefore easy to use to create test objects, may not tell us

about typicality, but about clay. I therefore had to work with tools capable of cutting

hard plastic, metal, wood, etc., with enough precision to keep the manipulated objects

from standing out as the obvious test objects.

Further issues arose when an object with an atypical value was called by some other

name. For example, a coin made of zinc could be called “the dark coin” and scissors with

jagged edges could be called “pinking shears”. Many objects considered from McRae’s

norms were not used because manipulating the shape or material was likely to elicit

interconnected attributes.

The final set of test objects are listed in Table 2, along with their typical and atypical

values for shape and material.

5.4. Annotation

A hallmark of annotating materials from real world objects is that there may not be

agreement in all cases as to the attribute being described. Is “unsharpened” a realization
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Object Shape Material
bowl curved (7) round (19) ceramic (5) plastic (8)
box rectangular (7) square (21) cardboard (16) wood (7)
envelope paper (14)
key metal (20)
mug ceramic (10)
ruler rectangular (6) straight (6) flat (5) plastic (12) wood (17)
screws flat_head (6) metal (17)

Table 1. McRae’s Norms: Visual features for test objects. Production
Frequency, the number of participants out of 30 who listed this feature, is
in parentheses. I add typical shape for envelope, key, and mug based on
what was most common in stores where the objects were purchased. The
final set of objects and properties are listed in Table 2.

Typical Atypical
Object Shape Material Shape Material
bowl round ceramic flower wool
box square cardboard heart clay
envelope rectangle paper square foam
key rounded head metal square head wood
mug round ceramic octagonal metal
ruler rectangle wood with holes paper
screw flat circular head metal oval head plastic

Table 2. Typicality Study: Shape/Material objects.

of a process attribute? Does “poky” correspond to shape? I develop the following

set of attributes to annotate the data, listed in Table 3. A second annotator other than

the main author was given a random subset of 20 experiment test objects, and told to

annotate each expression as to which attributes it contained from those shown in Table

3, with the given examples. To check inter-annotator agreement for the two properties

of shape and material, I treat each as binary categorical variables. Cohen’s  is very

good for shape (=.894) and good for material (=.798). Disagreements were over

whether “metallic” in “the non-ribbed metallic cup” was a material or a texture,

whether “heart” in “a heart-shaped box” was a shape or a type, and whether “silver” in

“a silver round cup” was a color or a material.
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analogy “like a cat”
color “blue”
fill “empty”
flex “flexible”
form “open”
hardness “hard”
intensity “dark”
location “close to me”
luminescence “bright”
material “copper”
opacity “clear”
other “other”, “another”
part-whole “with a slot on

top”
process “adjustable”

shape “square”
sheen “shiny”
size “little”
subjective “weird”
subtype “ball point”
texture “rough”
type “box”
use “for oil”
weight “light”
Examples of phrases conveying
more than one attribute
analogy:shape “shaped like a P”
type:shape “diamond”
process:analogy “that opens like a

purse”

Table 3. Attributes considered and example surface forms.

5.5. Method

My goal is to discover whether an atypical attribute-value is more likely to appear in

a description than a typical attribute-value. I test this for two attributes, shape and

material.

5.5.1. Participants and Design. Thirty native English speaker with normal or

corrected vision were recruited through word of mouth and online ads, 17 males and 13

females, aged 20-55. Trials were arranged in a repeated measures design. Participants

were assigned randomly to one of two groups, Atypical Shape or Atypical Mate-

rial. In the Atypical Material group, subjects referred to objects with a typical

shape and an atypical material. In the Atypical Shape group, subjects referred to

objects with a typical material and an atypical shape. Each participant referred to

an equal number of fillers and seven target objects, in a randomized order. Each target
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item could be minimally distinguished by one attribute – shape or material. Four

male subjects and one female subject were randomly excluded to balance gender, leaving

6 female and 6 male subjects in each group. This held-out set was later used to replace

two subjects identified as outliers (see Section 5.6).

Figure 3. Objects used in study.

5.5.2. Materials. Subjects were presented with an array of different objects, pri-

marily office-type objects, as shown in Figure 3. Amongst these objects were shape/material

pairs for the seven target objects – bowls, boxes, envelopes, keys, mugs, rulers, and screws

(see Table 2). Most filler objects1 could be distinguished by type (head noun) alone. A

few filler objects of the same type could be distinguished by subtype, size, material,

and form. The full list of filler objects are listed in Table 4, along with attribute-

values. Objects of the same type that could only be uniquely identified with additional

disambiguating modifiers are grouped together.

5.5.3. Procedure. This study follows a director-matcher paradigm, where the di-

rector (“the speaker”, the participant) sees pictures of objects arranged on a grid and has
1Filler objects also serve as distractor objects in the traditional REG sense (Dale & Reiter, 1995).
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battery
coin
bracelet
c-clamp
cube*
fork
funnel
paintbrush
pencil
rolling-pin
rubber-band
salt-shaker
scissors
sphere*
staple-remover
stapler
toothpick

ball (form:spiky, material:plastic)

ball (form:smooth, material:styrofoam)

clip (subtype:binder-clip)

clip (subtype:paperclip, size:big, material:metal, form:ribbed)

clip (subtype:paperclip, size:small, material:metal)

clip (subtype:paperclip, color:yellow, shape:triangle, material:plastic)

clip (subtype:paperclip, color:yellow, intensity:dark, size:small)

clip (subtype:hair-clip)

comb (color:black)

comb (color:red)

pen (color:black, subtype:mechanical,finepoint)

pen (color:blue, subtype:refillable,fine point,rollerball)

pen (color:blue, subtype:bic,ballpoint)

pen (color:purple, subtype:felt)

pushpin (color:white)

pushpin (opacity:clear)

pushpin (material:metal, part-whole:shape:flat)

pushpin (material:metal, part-whole:shape:sphere)

Table 4. Filler objects. Objects for which reference was not elicited are
in italics. Objects that could not be distinguished by type alone are listed
on the right, alongside possible distinguishing attribute-values.
* These objects were varied by color/size as part of a separate pilot experiment.

to instruct the matcher (“the mover”, an assistant) to put them in the same positions.

Each picture contains five objects: four fillers and one test object, in different positions

across images (see Figure 4).

Subjects sat at a table opposite another student assisting in the study. The experimenter

sat at the head of the table, reading a book. Between the participant and the assistant

was a large set of everyday objects (rulers, envelopes, pins, etc., as shown in Figure 3).

Facing the subject was a laptop, whose screen was not viewable to the assistant. The

laptop displayed images of different objects laid out on a grid (as in Figure 4), and the

subject could scroll through the images by clicking a button. Subjects were instructed

to explain to the assistant how to reproduce each picture. Full participant instructions

are available in Appendix D.
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The twelve participants in the Atypical Shape group saw eight pictures (1 practice +

7 test) that included atypical shape stimuli. The twelve participants in the Atypical

Material group saw eight pictures (1 practice + 7 test) that included atypical ma-

terial stimuli. Between each trial, objects were put back into their original positions

by the experimenter. Subjects were recorded directly to the laptop, and the data was

transcribed and anonymised.

Figure 4. Example stimuli, Atypical Shape group. Here, the target
object is the square envelope.

5.6. Results

5.6.1. Annotation and Outliers. Some example expressions for each of the test

objects and some of the fillers are given in Table 5. Example modifiers for the material

and shape attributes are given in Table 6.

To check for possible outliers, I look for participants who are more than two standard

deviations from the mean. In each group, I calculate the average number of references

with shape, and the average number of references with material. Participants whose

total number of references with shape or material are more than two standard devia-

tions from the mean for that property are identified as possible outliers. No subjects in
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Object Shape Group Material Group

bowl

“the brown flower shaped bowl” “the brown cloth bowl”

box

“the heart shaped box” “the brown square clay box”

envelope

“the cd case” “a white envelope”

key

“the key with the square um “the wooden key”
whatever you call it i-”

mug

“the um silver cup “a metal cup”
that’s octagon shaped”

ruler

“a ruler. . . a ruler “the uh the flat ruler”
with geometric shapes”

screw
“the black small screw “a little black screw”

with the flat head to pick it up with”
some “the large silver paper clip” “the black comb”
fillers “the uh plastic fork” “the white thumb tack”

Table 5. Example expressions: Test objects and some fillers.



Chapter 5.6 Page 141

Object Shape Material
bowl “flowery”, “flower-shaped” “felt”, “cloth”
box “heart-shaped”, “heart” “clay”
envelope “square” “padded-looking*”
key “with a square um handle” “wooden”
mug “octagonal”, “that is not round at the

top it’s a hexagon”
“metal”, “tin”

ruler “with geometric shapes, that has little
holes punched out of it”

“thinner*”

screw “squished-headed”, “with the flat head” “metal”, “flat head*”

Table 6. Atypical shape and Material: Example surface forms.
*Material for these objects not mentioned or incorrect.

the Atypical Material group were identified as possible outliers, and two subjects in

the Atypical Shape were identified as possible outliers. The data for these two subjects

(one male, one female) were removed and replaced with gender-matched data from the

held-out set.

5.6.2. Analysis. For each group, I measure whether there is a statistically signifi-

cant difference in the selection of shape versus material modifier. This is measured

using a standard paired t-test with object type as a repeated measure. For each partici-

pant, I sum the number of test object expressions containing a material modifier and

the number of test object expressions containing a shape modifier. This provides two

paired vectors to compare.

The t-test shows that there is a slight statistically significant difference between the the

selection of shape and material in the Atypical Shape group at ↵ = .05 (t = 3.0268,

df = 11, p = 0.01152), but not in the Atypical Material group (t = �1.8171, df = 11,

p = 0.09651). In the Atypical Shape group, an average of over 4 out of the 7 objects

include a shape modifier, and an average of 3 out of 7 objects contain a material

modifier. In the Atypical Material group, an average of over 2 out of 7 objects include

a shape modifier, while over 3 include a material modifier (see Table 7).
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This suggests that atypicality affects different attributes differently. People are more

likely to pick out atypical over typical shape properties when referring to objects, but

we do not have evidence that this effect is significant for material properties.

These findings may reflect that shape is a preferred attribute to material; this may

cause the selection of an atypical material attribute to be about as likely as a typical

shape attribute, and explain the difference between the two groups. Further testing is

necessary to examine this possibility.

Atypical Atypical
Shape Material

Expressions with shape 4.42 2.33
Expressions with material 3.00 3.42

Table 7. Average number of object references (out of 7) with shape,
material modifiers per participant.

Interestingly, when material was included in a reference in the Atypical Material

group, it was often incorrect (Figure 5). The plastic screw was called “metal”, the paper

ruler was called “wooden”. A similar tendency to refer to incorrect material types

emerges in the Atypical Shape group, where the ceramic mug painted silver was called

“metal” or “steel”, the ceramic bowl was called “plastic”, and the cardboard box was called

“wooden” (see Figure 6). The Atypical Shape group was dominated by shape references,

however, and those were usually correct; an exception again for the mug, which was called

“octagonal” (correct), “hexagonal” (incorrect) and “septuplet” (incorrect).

As can be seen in Figure 5, the ruler in particular in the Atypical Material group gave

rise to incorrect material modifiers – it was printed on paper with a wood print, so

it was called “wooden”. Most participants in the Atypical Material group did not use

material modifiers for the envelope and the screw, which may be due in part to the fact

that the screw was painted black and so was not clearly plastic; and the envelope was

made of foam, which may have not been clear without physically touching the object.
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Figure 5. Atypical Material Group. Number of participants who
included material modifiers that were right, wrong, or did not use a
material modifier at all (neither) for atypical material items. The
ruler tends to evoke incorrect material modifiers. The ruler, envelope,
and screw had no correct material modifiers at all.
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Figure 6. Atypical Shape Group. Number of participants who in-
cluded material modifiers that were right, wrong, or did not use a ma-
terial modifier at all (neither) for atypical shape items. The mug, box,
and bowl tended to evoke incorrect material modifiers. The mug (painted
silver) had no correct material modifiers at all.

Some examples of expressions in the Atypical Material group that do not include

material modifiers at all are given in Table 7.
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Ruler Envelope Screw
“the ruler” “the white envelope” “the screw”
“ruler that’s flatter” “ the uh weird padded looking

envelope thing”
“black flat head screw”

“the darker tan ruler” “long rectangular envelope” “the screw with the flat head”

Figure 7. Examples of references without material in the Atypical Ma-
terial group. We see underspecified references and references describing
the object’s size.

Object Shape Material Color Size Part Other
bowl-material 14.0% 33.0% 38.0% 14.0%
bowl-shape 46.0% 17.0% 25.0% 13.0%
box-material 12.0% 32.0% 36.0% 8.0% 4.0% 8.0%
box-shape 58.0% 37.0% 5.0%
envelope-material 22.0% 6.0% 33.0% 22.0% 17.0%
envelope-shape 25.0% 15.0% 35.0% 5.0% 20.0%
key-material 13.0% 67.0% 7.0% 13.0%
key-shape 20.0% 45.0% 25.0% 10.0%
mug-material 43.0% 43.0% 4.0% 9.0%
mug-shape 52.0% 43.0% 4.0%
ruler-material 6.0% 31.0% 13.0% 31.0% 19.0%
ruler-shape 40.0% 20.0% 5.0% 5.0% 10.0% 20.0%
screw-material 30.0% 4.0% 37.0% 19.0% 4.0% 7.0%
screw-shape 37.0% 5.0% 21.0% 16.0% 5.0% 16.0%

Table 8. Percentages of different modifier types for objects. Most likely
modifier types in bold.

5.6.3. Post-Hoc Analysis. Examining the spread of different modifier types across

objects and groups, as shown in Table 8, an interesting trend emerges. Objects are

predominantly described with shape, material, and color modifiers, but note that

those objects in the Atypical Material group that are not dominated by material

modifiers are instead dominated by color modifiers. This is shown for bowl, box,

envelope, and screw. Interestingly, the objects in this condition that do have a high

proportion of material modifiers – the key, mug, and ruler – were generally referred

to with a material modifier for which its colors were typical. The key and ruler were
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called “wooden”,2 and the mug was called “metal”. These objects have correspondingly

low proportions of color modifiers.

Those objects with the fewest material modifiers in the Atypical Material group

– screw and envelope – are those objects whose material was not visually clear. The

envelope was made of foam, and the screw was made of plastic, but colored black. The

screw could also be referred to by its subtype, “flat head screw”, which some participants

picked out (and further speaks to the difficulty of controlling complex properties of real

world objects). Not a single person got the materials for these objects correct (see Figure

5), although a couple mentioned an incorrect material, and a few subjects commented

that they could not tell what the envelope was made of. For these objects, the colors

did not give a clue as to the material; it is possible that material was therefore a

dispreferred attribute.

The remaining objects, the bowl and the box, have a relatively high proportion of both

material and color modifiers in the Atypical Material group. For these objects,

the material appears to be visually clear and the colors are not particularly tied to

the material – both the bowl’s material (wool) and the box’s material (clay) are dyed

rather than being the material’s natural color. We therefore may observe relatively high

proportions for both of these attributes because the materials are (1) visually clear and

(2) atypical, while (3) the colors are not typical for the materials.

The observed interaction between color and material is in line with visual work

that has pointed out that the two attributes are correlated (Liu, Sharan, Adelson, &

Rosenholtz, 2010; Berg et al., 2011). When an object’s colors are typical for a material,

color may be dispreferred and tends not to be produced, while material is produced

instead. And so we tend to call a wooden bead “wooden” rather than “tan” or “brown”.

color and material are interconnected.

2As mentioned above, the “wooden” designation was incorrect for the ruler; it was made of paper
with a wood-grain print. The pilot studied suggested that a plain paper ruler would be called “white”
rather than by its material.
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In the Atypical Shape group, both the envelope and the key contain fewer shape mod-

ifiers than another type of modifier. The atypically square envelope was commonly

called “the CD case” (it was not a CD case), a label suggested by the envelope’s form

and shape, and pointing to the interconnected relationship between shape/form and

type. For the atypically square key, subjects tended to refer to the fact that it was metal

– which, in designing the study, I took to be typical of keys – rather than referring to its

shape. It may be that its square head was not atypical enough to elicit shape modifiers

(it was not mentioned in McRae’s norms, but may still be relatively typical); it may be

that there was an effect from the atypical shape applying to a part of the object (its

head) rather than to the whole object; or there may be a general preference for including

materials like metal and wood in a description, even when they are typical. Teasing out

these details is a clear area for future research.

5.7. Discussion

5.7.1. Findings. This study has suggested that atypicality is a function of the ob-

ject, the attribute, and the attribute-value. In these tests, we see that adjusting the

typicality of the material attribute does not show a significant tendency to include

material-denoting modifiers, while adjusting the typicality of the shape attribute does

show a significant tendency to include shape-denoting modifiers. The reasons for the

difference between the two attributes may be due to the fact that shape is preferred

overall to material. Shape may also be more visually salient: material is not avail-

able pre-attentively and is inefficient for guiding attention (Wolfe & Myers, 2010), while

shape may be much more accessible when scanning the scene.

An important issue that I did not address is what is preferred between shape and

material. If both are equally typical for an object, and shape is preferred, then the

results may be explained by the fact that the Atypical Shape condition did nothing to

discourage the preference for shape, while the Atypical Material condition did. This

still suggests that typicality plays a role, but it is less clear that atypical material
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is dispreferred; it may be that the preference for shape interacts with a preference to

mention an atypical material, giving rise to approximately equal distributions of shape

and material for these kinds of objects.

Another complicating factor is that it seems that material is not always visual. Sev-

eral attributes may be used to determine material (color, sheen, etc.), and so this

appears to be a more complex attribute that may not always be clear without physically

handling the object. I find that many of the mentioned materials are incorrect – a sil-

ver ceramic mug is called “metal”, a wood-printed paper ruler is called “wooden” and a

shiny brown ceramic bowl is called “plastic”. The white envelope made of foam is not

once referred to by this material, but subjects instead pick out its texture (“weird-

textured”), form (“padded-looking”), or suggest that it is another object (“the clutch”,

“eyeglass case”). Similarly, the black screw made of plastic is not once referred to by

this material; subjects instead incorrectly refer to the material as “metal”, or else refer

to it as a more specific subtype of screw, “flat head”. Further, there seems to be an

interaction between material and color, with color modifiers being less common

than material modifiers for objects whose colors are suggestive of a specific material.

5.7.2. Implications. These findings have interesting implications for a referring

expression algorithm. It is not enough to judge whether a visual attribute-value is atypical

or not; it must also be judged whether that value is visually clear, and whether other

properties suggest another interconnected attribute-value (which may not actually be true

of the referent, as when subjects used incorrect modifiers). For shape, we see people

using a subtype of the basic level class (“CD case”) as well as mentioning the atypical

shape. For material, if the interconnected attribute of color is not clearly indicating,

then a material modifier may not be produced, or else produced, but incorrect. On the

other hand, if the material is not colored, or is its typical colors, then material may be

preferred over color.
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5.8. Conclusions and Future Work

This study has sampled a handful of objects for referring to the typicality of two at-

tributes, shape and material. We see a strong effect for shape, but we do not see

a strong effect for material. It is still an open question how the findings from this

study generalize to other types of objects, or other kinds of attributes. For now, I have

developed support for the idea that in some cases, atypicality influences what a person

will refer to in an object.

The difficulties interpreting these results stem partly from the inherent difficulty of work-

ing with real-life objects. Previous work in corpora-building for REG, such as the

GRE3D3 Corpus (Viethen & Dale, 2008) or the TUNA Corpus (van Deemter et al.,

2006), has largely minimized this issue by choosing simple or deliberately normed ob-

jects. In this study, I must make disparate objects as identical as possible for a variety

of visual properties, and am limited by my physical abilities to do so.

The benefit of this is that we get to see how people refer to real life objects, presented

in-person, which is indispensable in developing an algorithm that generates human-like

reference to visible real world objects. This opens up a variety of details that have not

yet been researched before, such as the role of interconnection between properties and

what kinds of properties people tend to pick out when referring to visible objects.

Building on results, it appears that material is often tactile as well as visual – many

subjects did not get the material correct, and their references reflected a misconcep-

tion based on how the object looked. Perhaps this would have been avoided if we had

added tactile sensations to the experiment. It would be interesting to examine this same

experiment, but incorporating a tactile as well as a visual modality.

In future work, I hope to examine whether shape is preferred over material when all

else is equal, and how gradations of atypicality for an attribute affect reference; some

values may be more atypical than others, and thus more likely to be included in a final

description. It would also be useful to tease out the details of interconnection, and what
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this tells us about how people refer in visual domains. The further factor of how cultural

notions of typicality affect reference has not been addressed here, but is likely to effect

how people refer.

Findings from this study support the idea that a knowledge base with typical attribute-

values may be used during referring expression generation to generate human-like ref-

erence (discussed in Chapters 2 and 3). In addition to guiding what is remarkable and

what is unremarkable, as discussed in this chapter, such a knowledge base could also be

used to guide the selection of head noun (type) based on the recognized attributes; and

guide the selection of similar objects that the referent object may be compared to, e.g.,

to create an analogy (Chapter 3).

In Chapter 7, I introduce an algorithm utilizing such a knowledge base to guide the

generation of natural reference. Following some of the discoveries in this study, the

algorithm treats different attributes differently, with color and material processed as

interconnected attributes, and atypicality affecting the selection of modifier.



Chapter 6

Color

6.1. Introduction

Although I do not focus on color in this thesis, it is evident that this is a very important

property in reference in a visual domain. In each experiment in Chapters 3, 4, 5, color

emerged as one of the top properties. This makes sense from the perspective of vision,

since color is the property first processed by the visual system, one of the most basic

properties in the visual cortex, and a key property for guiding attention when viewing

a scene (Treisman & Gelade, 1980; Wolfe & Myers, 2010). This is also in line with

previous research that has shown that people favor color when referring (Belke &

Meyer, 2002; Sedivy, 2003; Brown-Schmidt & Tanenhaus, 2006; Koolen et al., 2011;

Arts, Maes, Noordman, & Jansen, 2011) and often use color redundantly, when a

final expression would be equally distinguishing without it (Pechmann, 1989; Viethen,

Goudbeek, & Krahmer, 2012). Although I do not run an additional experiment on

color, let us at least briefly discuss it, looking at what the literature and the previous

work in this thesis tells us, to understand the role it plays in reference to visible objects.

Color receptors are at the forefront of visual perception, preceding later areas that re-

spond to properties such as size and shape (see Chapter 1). There is increasing evidence

that color is used in early levels of visual processing to help facilitate shape recognition

(Wurm, Legge, Isenberg, & Luebker, 1993; Yip & Sinha, 2002), and an object’s color

may be an intrinsic component of the visual representation, retained in long-term mem-

ory (Naor-Raz, Tarr, & Kersten, 2003) and used to identify objects (Tanaka & Presnell,

1999; Therriault, Yaxley, & Zwaan, 2009). This suggests that a part of the reason why

color is so common in referring expressions is that it is useful in low level vision as well
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Figure 1. Objects used in Craft Corpus.

as higher level object categorization. Not only is color a visually salient property, but

an integral part of what we remember about objects.

Previous approaches to referring expression generation have suggested treating color

as a special property, placed at the beginning of the Incremental Algorithm’s preference

order (van Deemter, Gatt, van der Sluis, & Power, 2012) or assigned a cost of 0 in the

Graph-Based Algorithm (Viethen et al., 2008). The basic idea behind such approaches is

to allow for color to be redundantly included in a final expression. To go a bit further

towards understanding how people use color in referring expressions, it is therefore

useful to look at when color is not used. Below, I go through the corpora I have

collected throughout the thesis to examine what this tells us about exceptions to the

tendency to include this attribute.
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6.2. Craft Corpus

The first corpus I examine is the Craft Corpus from Chapter 3. The objects used in

this study are shown in Figure 1. All references to pick out items on the craft board

are annotated, represented as visual attribute-value sets (e.g., “color:red type:ball”

for “red ball”). The frequencies for each attribute are listed in Table 1, repeated from

Chapter 3. As can be seen, color is the dominant attribute that people use, appearing

594 times in 1,842 expressions and more than tripling the next most common attribute,

size.

To understand when color is likely not to be included, I look at the distribution of

attributes for each referent. For references to singular items, I find that color is consis-

tently not the most common attribute for the wooden bead. For this referent, material

is more common than color. A possible reason for this is that a material modifier like

“wooden” conveys more information than a color modifier like “brown”. Because wood

tends to be brown, color is implied by material; the material modifier suggests

both the material and its accompanying typical color. This is again the issue of

interconnected properties discussed in Chapter 5, shown in the preference for material

wood over color brown.

6.3. Size Corpus

This corpus contains expressions elicited to images of object pairs, as discussed in Chap-

ter 4. Object pairs were all rectilinear solids and included books, brownies, boards, and

sponges. In all cases, the colors of the two objects were identical; objects were manipu-

lated so that their sizes were different along their x and y axes. This also affected their

shape, so that they were either rectangular or square.

This corpus has not been fully annotated for visual attributes other than size. I therefore

take the top 100 most frequent words in the corpus and annotate these to gather the list of

visual attributes below. Note that because these are annotated without the surrounding
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Attribute Frequency Example
color 594 red, green, silver, purple, yellow
size 192 big, medium, small, short, thick, long
shape/form 156 heart, circle, ball, square, sphere, bent, twisty
type/material 94 foam piece
type/shape 89 heart, square, circle, rectangle
material 73 foam, wooden, tinsel, plastic, bronze
sheen 22 sparkly, glittery, shiny, luminescent
texture 16 fluffy, fuzzy, furry
orientation 12 upside-down, horizontal
pattern 3 striped, (with a) pattern
location 1 “at the bottom of the. . . presentation”
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Table 1. Craft Corpus attribute frequencies.

context, the value for number may be inflated; “one” frequently occurs as a head noun,

not as a modifier.

We can see that the property of size, an independent variable in the study, and the

related property of shape emerge as the most frequent attributes; these are followed by

color. In contrast to the previous corpus, color is therefore not the most common

property. Instead, we find that in scenes with two objects that have identical colors but

differ in size, size emerges as the common attribute. This is in line with findings that
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Attribute Frequency Example
size 6360 smaller, taller, larger
shape 1571 rectangular, square
color 394 white, black, blue
number 165 one, two
location 74 right, top
process 68 cut, burnt
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Table 2. Size Corpus attribute frequencies.

color is less likely to be used in scenes with relatively little color variation than in

scenes with a large amount of color variation (Koolen et al., 2011), and suggests that one

factor affecting whether color is selected is a function of the number of objects and the

number of object colors.

6.4. Size Corpus Fillers

These are the fillers of the Size Corpus, and include legos, spatulas, and shoes. This

corpus has not been fully annotated, and so I again take the top 100 most frequent

words in the corpus and annotate these – because the words are annotated without the

surrounding context, some values may be inflated. In this corpus, the value for location

seems quite high; high top shoes were a stimulus in the fillers, and top emerges as a
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frequent word, which I annotate as location. Results are shown in Table 3. We again

find that color is the most frequent attribute, occurring more than three times as

frequently as the next most frequent attribute size.

Attribute Frequency Example
color 8490 green, blue, black, yellow, white, brown
size 2472 smaller, shorter, taller, bigger
number 1803 one, two, three
shape/form 1540 round, rectangular, slotted
material 664 plastic, wooden, lace
location 630 top, bottom, middle
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Table 3. Size Corpus fillers attribute frequencies.

These findings from the fillers sub-corpus serves as an interesting contrast to the findings

from the test stimuli in the Size Corpus. In both sub-corpora, two objects are presented,

placed next to one another (with exception to the spatulas, which appeared in groups

of three). There is neither a wide range of objects nor a high degree of color variation,

and yet we see a similar pattern of results to the highly varied Craft Corpus. Work by

Koolen et al. (2011) has shown that scenes with low color variation lead to significantly

fewer color modifiers than scenes with high color variation, but in Koolen’s study, low

variation had no color variation: All objects were the same color. With only two
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objects of the same type but different visual properties, the marked preference for using

color modifiers is evident. Perhaps scenes with low variation – where some objects are

different colors – will show a large jump in the number of expressions using the color

property. Regardless, the pattern of results in the Craft Corpus and the Size Corpus

suggests that there is some effect of the contrast set on the selection of color. Whether

this is due to visual salience relative to the color of other objects in the scene (the “gist”

of the scene and the “pop-out” effect (Treisman & Gelade, 1980); see Chapter 2), direct

comparisons with the color of other objects, or some other mechanism entirely, is less

clear.

6.5. Typicality Corpus

I again look at attribute frequencies, this time from the Typicality Corpus introduced in

Chapter 5. Results are shown in Table 4. The typicality experiment involved manipu-

lations of shape and material properties; these are the most frequent in the corpus.

Following these, color properties are the next most frequently mentioned.

Examining the object references from the Typicality Corpus, we see that color tends

not to be included when the material is metal or wood, in line with the findings from

the Craft Corpus discussed above. Here, the scene has relatively diverse objects with

a variety of colors, and yet we do not see that color is the most common property.

Comparing this with the Size Corpus fillers above, we see that when the scene has just

a few objects of the same type, differing in several properties including color, color

is preferred; when the scene has many objects of different types, but objects of the same

type do not have different colors, color is less preferred.

One way to explain this trend is to posit that color is chosen partially by direct com-

parison processes, specifically comparing a target object against other objects of the same

category. This suggests that the selection of color may be affected by both the overall

color variation of the scene as well as the contrast with objects of the same type.
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Attribute Frequency Example
shape/form 95 hexagonal, circular
material 87 metal, wooden
color 68 black, white, brown
part-whole 40 with a lid, with the blade
size 23 thin, thick, skinny, little
use/process 17 carved, molded
intensity 10 darker, lighter
analogy 9 . . . like a butterfly
texture 3 hairy, fuzzy
location 3 here, . . . on top
subjective 2 plain, weird
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Table 4. Typicality Corpus attribute frequencies.

This corpus also provides further evidence that color is interconnected to material,

particularly when its value is metal or wood.

6.6. Conclusions

In the highly diverse Craft Corpus and the relatively uniform fillers sub-corpus of the

Size Corpus, we found that color was exceedingly preferred. In the even more uniform

Size Corpus and the Typicality Corpus, we found less evidence that color is a preferred
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attribute, instead seeing a predominance of the attributes being studied in building each

corpus. The commonality between the Size Corpus and the Typicality Corpus is that

both had objects of the same type with the same color, while objects in the Craft Corpus

and the fillers sub-corpus of the Size Corpus had objects of the same type with different

colors. This suggests that in addition to the pre-attentive role that color may have

in visual reference, comparison processes of a target object against another of the same

type may also play role.

A clear effect on the selection of color when referring to real world objects is the influ-

ence of interconnection: Some natural materials, like metal and wood, are inextricably

linked to their typical color, and in these cases material rather than color is often

used to refer to the object. Indeed, the interconnection between color and material

is reflected in our lexicon, with words like “copper”, “silver”, and “gold” used for both a

material and a corresponding color. It seems reasonable for an REG algorithm to factor

in what an object’s color may be interconnected to, specifically for material properties.

We also see some trends that preliminarily suggest that both comparison processes and

overall “gist” knowledge takes place when naming objects in a scene and referring to their

color. This is well-supported by visual evidence that shows that we use color to guide

attention (Wolfe & Myers, 2010) when looking at a scene pre-attentively, and highly

contrasting colors can “pop-out” in their environment (Treisman & Gelade, 1980). To

apply this to an algorithm, an initial pre-attentive, “gist”-based representation of the

scene that affects the selection of different properties could precede more fine-grained

comparison processes, contrasting the target object against other objects of the same

type.

The ideas that color is a salient property, interconnection plays a role particularly for

color and material:metal/material:wood, and at least two separate processes are

involved in naming, one based on “gist” and one based on direct comparisons, are applied

in the algorithm introduced in Chapter 7.



Chapter 7

The Visible Objects Algorithm

7.1. Introduction

In this chapter, I give the problem of generating natural reference to visible objects

center-stage, proposing a process that creates semantic structures for object description

assuming a correct visual input. This input provides evidence for a wide range of visual

properties, including height and width features for the detected object. This separates

the problem of vision from the problem of language, allowing us to address two critical

issues in generating human-like language from a visual input as computer vision research

advances: (1) Specifically what visual input should aim to provide, given the current

state of the art; and (2) Methods for generating human-like reference with a perfect

visual input.

7.2. Generating Human-Like Reference

Previous algorithms in referring expression generation have largely been deterministic,

with a primary goal of creating one expression type to uniquely identify a referent.

Throughout this thesis, I have questioned determinism and the goal of unique identi-

fication in generating human-like language. I have also discussed how speakers produce

several different expressions for the same referent, and how their reference may be de-

scriptive, including properties because they are visually prominent – like color and size –

rather than because they distinguish the referent from a set of competitor objects. This

type of reference is similar to the conversational or verbal account of reference rather

than the literary account of reference common to earlier work. Having now set the stage,

in this chapter I propose alternative strategies for generating reference. The algorithm I
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Figure 1. Speaker variation is a large part of referring expression genera-
tion. For example, sixty-eight subjects referred to this object in thirty-four
different ways (Mitchell, 2008).

introduce uses non-determinism to capture speaker variation, and operates with a goal

of describing what is salient about the referent object following ideas from visual pro-

cessing. Before turning to a larger discussion of the algorithm, I will briefly summarize

these points.

7.2.1. Non-Determinism and Speaker Variation. In earlier work (2008), I col-

lected 68 references to a ball that was orange and bumpy (see Figure 1). By letting

participants refer to the object however they would like, there were a total of 34 distinct

expressions – an average of one unique reference for every two people. However, these were

not normally distributed; 13 participants said red ball, 6 said ball, 3 said orange bumpy

ball and (for example) 1 said dog toy. With this sort of variation, making generalizations

about reference in any domain is difficult. We still do not know when properties are

included in a description independently of one another, what scene-specific, task-specific,

and person-specific aspects result in particular properties being chosen, and what factors

are involved in determining whether a description is satisfactory. As discussed in Viethen

and Dale (2009), much of the data on referring expression generation does not warrant

very strong claims about the nature of referring expression generation at all. What is

clear is that people generate different expressions for the same object, but have certain

preferences, such as including color modifiers. In this algorithm, we begin to capture this

variation for the first time.

A possible way to model this is to make an algorithm non-deterministic, generating

structures for a wide range of expressions, and giving preference to those properties known
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to be preferred by people. This approach is taken in this algorithm, where different

attribute sets are stochastically generated based on prior likelihoods (further detailed

below). With this method, different referring expressions may be generated with varying

probabilities.

7.2.2. Salient Properties, Overspecification, and Underspecification. Ap-

proaches to referring expression generation usually focus on uniquely identifying the ref-

erent, including properties that rule out all other distractors. However, we do not have

evidence that this is what people do. In fact, the tendencies for overspecification and

redundancy – where properties that are not distinguishing are included (Sonnenschein,

1985; Pechmann, 1989; Koolen, Gatt, Goodbeek, & Krahmer, 2009) (see Figure 2, and

Chapter 3 Table 3 for a further discussion) – and the phenomenon of underspecification –

where speakers fail to uniquely identify the referent (H. H. Clark et al., 1983; H. H. Clark

& Wilkes-Gibbs, 1986; Viethen & Dale, 2008, see the study from Chapter 5) – suggest

that ruling out distractors is not what people do.

An alternative idea is that properties are selected because they are salient for the speaker

(Horton & Keysar, 1996; Bard, Hill, Arai, & Foster, 2009). Such tendencies have been

attested in dialogue, but have not been thoroughly examined in monologue (but see

Chapter 3); when generating initial reference in conversation, speakers may not spend

a great amount of cognitive effort considering the perception of the hearer (Keysar &

Henly, 2002), and may “blurt out” their reference (Ferreira & Swets, 2002) before they

have even begun scanning the alternatives (Pechmann, 1989). This suggests that a

reference generation algorithm that aims to produce natural initial reference should not

try to find an optimal subset of properties, but to model what speakers find important

when first introducing an object into discourse. In particular, we know that color is

a salient attribute in many cases, interacting with material, and that size also plays

an important role. Further properties may be selected based on prior likelihoods from
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a corpus of reference to visible objects – what we have learned as common to mention

from past experiences.

7.2.3. Parallel Processing. We know that the visual system contains two dis-

tinct cortical pathways operating in parallel, the so-called “what” and “where” path-

ways (Mishkin et al., 1983). The dorsal (“where”) pathway processes locations, sizes,

distances, orientations, and spatial properties in three-dimensional space, while the ven-

tral (“what”) pathway detects edges, regions of common color, texture, and geometric

properties (Kosslyn, 1994).

It is conceivable that using a similar distinction between two parallel pathways may

be useful for generating natural language. My underlying assumption is that visual

perception and language production may be seen as connected, with the separate vi-

sual pathways influencing pathways for language production. As such, we can separate

“where” properties – size, orientation, location, etc. – from “what” properties like color,

shape, and material during generation. With such a structure, there may be competition

between two parallel pathways, where different properties are more likely to be added

the more quickly they are processed; because properties are added partially as a function

of the length of the expression constructed so far, the speed at which each property is

processed in the two parallel paths may affect the final surface form.

The algorithm introduced in this chapter is developed to address these issues, incorporat-

ing the non-deterministic size algorithm introduced in Chapter 4 and bringing together

the different mechanisms that I have proposed to be underlying different visual descrip-

tors. This includes a knowledge base of typical properties (discussed in Chapters 3 and

5), and separate processes for absolute and relative properties (discussed in Chapters 2,

4, and 6). Likelihood estimates that are used to determine what expression is generated

may be learned from a corpus of descriptive expressions, in order to model general hu-

man tendencies in describing objects; it may also be learned from a corpus from a single

person, in order to model a single person’s referential tendencies.
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Figure 2. One cube, Two cube, Big cube, Blue cube? Many speakers
would call the object on the right a big blue cube, although either big or
blue can clearly and uniquely identify the referent.

Before continuing, a comment on notation: The algorithm uses properties, attributes, and

values. A visual property is an attribute-value pair. An attribute is a general visual class

like color; a value is the value for that class, like red. A property may therefore be

color-red, made up of the attribute color with the value red.

7.3. Attributes Considered

The algorithm introduced in this chapter first establishes a semantic value for an at-

tribute. This value is derived given a multidimensional feature vector for the attribute.

For example, given the color attribute and a feature vector representing the RGB val-

ues of all the pixels in a target object, a single RGB semantic value may be selected

to represent the overall color of the object, such as <217, 70, 0>.1 Semantic values are

used to create lemmas, representations of the semantic properties of a word without any

phonological information specified (Levelt, 1989; Schriefers, 1992; Bock & Levelt, 1994)

(see Chapter 2). In our example, <217, 70, 0> could be used to create a lemma for “red”

if the object is hair, or a lemma for “orange” if the object is juice.

I make a broad distinction between two kinds of properties, simple and complex. Simple

properties (SP) include the absolute property of color (with associated values) and

the relative properties of size, location, and orientation (with associated values).

1This color:
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These correspond to those properties that are first processed by the visual system (cor-

tical areas V1 and V2) and help guide attention (Wolfe & Myers, 2010, see Chapter 1

for review). Complex properties (CP) are those hypothesized to be analyzed in the ven-

tral stream (“what pathway”) and include material, texture, pattern, and other

absolute properties.

I establish such a separation in order for the algorithm to process these two kinds of

properties differently. This mirrors activity in the visual pathway, where simple properties

feed forward to more complex properties (Mishkin et al., 1983; Riesenhuber & Poggio,

1999; Itti & Koch, 2001), and follows works in computer vision, where recognizers for

different visual attributes such as material are built using low level features such as color

and edge orientations (Farhadi et al., 2009; Kulkarni et al., 2011).

In the proposed algorithm, simple properties are analyzed first, beginning with the si-

multaneous processing of color and size. My hypothesis is that the first properties to

be cognized in the visual system are likely to be the first considered in an expression for

a visible object. This is a possible explanation of why color is so common in referring

expressions (see Chapter 3, 4, 5); it is perhaps not a coincidence that color is the first

property discriminated by the visual system (see Chapter 1).

A list of visual properties intended for this algorithm is available in Table 1. The list is not

an exhaustive list of visual properties, and excludes, e.g, count, flicker, motion, more

complicated forms of location (e.g., “on top of X”), etc. A few of the listed properties are

non-obvious and require some explanation: form-shape is intended for forms composed

of smaller shapes, such as “spiky” (composed of spikes) or its converse, “smooth”; form-

objects is intended to be forms composed of smaller objects, e.g. “hairy” (bits of hair)

or “feathery” (with feathers); other sense corresponds to other senses, e.g., an object’s

feel may be “soft”, and this may be used in a visual description. use/process is a

category for properties that are derived from a process (e.g., “braided”) or speak to the

use of the object (e.g., “empty”, denoting that the object is used to hold something).
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Attribute Example Surface Form
Simple Properties

color “red”, “dark”
size “big”
orientation “sideways”
location “on the right”

Complex Properties
material “ceramic”
opacity “transparent”
shape “square”
pattern “striped”, “speckled”
sheen “shiny”
subjective “pretty”
form-shape “flat”, “spiky”, “smooth”
form-objects “hairy”, “feathery”
other sense “soft”
use/process “open”, “braided”, “empty”

Table 1. List of visual properties under consideration.

As mentioned above, each visual property is intended to be a feature vector. For example,

location may be represented as x, y, z coordinate features; and size, the one attribute

I have addressed in great detail, may be represented as height and width features (see

Chapter 4). This allows the algorithm to create semantic attribute-values based on

several interacting features at once. For example, <over, +> for size (Chapter 4). Once

created, each semantic value may be selected to become a lemma, and so included in the

final description. For example, <over, +> may become the lemma for surface forms like

“large” and “big”.

Since head noun selection can be chosen from a visual property – people speak to the

red square or piece of foam (shape and material properties, respectively: See Chapter

3, Section 3.6.2), the algorithm creates the lemma for the object head noun last. This

allows the flexibility to create a head noun from a previously selected property in future

work.
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7.4. Main Ideas

Given an object and a scene, the algorithm constructs an identifying description. I define

an object to be a single intended inanimate referent. I define a scene to be a visual rep-

resentation of objects within the focus of attention. I define an identifying description to

be a description to identify an object, which may or may not uniquely distinguish it. To

the best of my current understanding, an identifying description corresponds to Donnel-

lan’s (1966) referring expression, Searle’s (1969) identifying description, Appelt’s (1985)

expressions with identification intention, and Clark and Bangerter’s (2004) referring (see

Chapter 2).

The goal behind the algorithm is to identify the referent with human-like variation using

its known properties; the goal is not to uniquely identify the referent. Some of the basic

ideas behind the algorithm are as follows:

(1) Inclusion of an attribute is a function of description length and prior likelihood

for the attribute.

(2) The final expression is not produced deterministically.

(3) Atypicality has an effect on property inclusion.

(4) Some attributes are interconnected.

(5) Both parallel and incremental processes can be used.

Ideas (1) and (2) follow from the fact that people occasionally underspecify or overspecify

when they refer, either including more conceptual information than necessary to identify

a referent or else failing to uniquely identify the referent upon initial reference. By using

likelihood values to non-deterministically add properties, I aim to create an algorithm

that well approximates natural human variation. Including attributes as a function of

how many attributes have already been selected follows the finding that people rarely

include more than three modifiers in a noun phrase, and are much more likely to include

two (or fewer) (Mitchell, Dunlop, & Roark, 2011; Berg et al., 2011). This is a way
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of implementing the cognitive load that may affect how many properties people use to

describe an object.

I define likelihood estimates in the variables ↵
x

, �
y

, �
y

and �, where x represents an

attribute and y represents a property (attribute-value pair). ↵
x

represents the prior

likelihood of including the attribute x. �
y

represents the typicality of property (attribute-

value pair) y for the referent. � is a penalty function given the length of the constructed

identifying description r. �
y

is a measure of bottom-up visual salience of the property

y, and is not currently implemented; all objects are taken to be equally visually salient.

In following work, I aim to tune these estimates more precisely using, e.g., expectation

maximization.

For now, I begin by defining the stochastic function that determines whether a lemma

is included in the identifying description. Given an incomplete identifying description d

and a property y with attribute x, the function returns the probability of adding a lemma

for the property given d, p(y ! lemma|d). This is calculated as the linguistic and visual

salience of the property s
x,y

times a length penalty �, plus the atypicality of s
x,y

. I define

s
x,y

to be the prior likelihood of attribute x (↵
x

) multiplied by the visual-salience of the

property y (�
y

):

s
x,y

= ↵
x

⇥ �
y

(7.1)

Typicality values for �
y

increase the more typical a property is; because I want to make

less typical things more likely to be mentioned, I add the atypicality measure (1 - �
y

)

weighted by the remainder of the probability space:

(1� �
y

)⇥ (1� (s
x,y

)) (7.2)

The penalty based on description length � should be inversely proportional to the length

of the description, and so I define � as 1
|d| multiplied by some constant g, and multiply

this into the linguistic and visual salience:
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s
x,y

⇥ � (7.3)

This leaves the following stochastic function:

p(y ! lemma|d) = s
x,y

⇥ � + (1� �
y

)⇥ (1� (s
x,y

)) (7.4)

= ↵
x

⇥ �
y

⇥ � + (1� �
y

)⇥ (1� (↵
x

⇥ �
y

)) (7.5)

A lemma for a property (attribute-value) y is therefore added as a function of the linguis-

tic salience of its attribute (the relative frequency with which the attribute is included in

descriptions), the property’s visual salience (not currently implemented), and the prop-

erty’s atypicality for the object. The current formulation is admittedly crude. I am here

detailing the broader ideas I am working towards; in evaluation (Chapter 8), I use a

simpler approach, without a �
y

measure of bottom-up visual salience:

p(y ! lemma|d) = ↵
x

⇥ � + (1� �
y

)⇥ (1� ↵
x

) (7.6)

Without typicality values available (�
y

) (true in some conditions of the evaluation), this

becomes:

p(y ! lemma|d) = ↵
x

⇥ � (7.7)

Both functions 7.6 and 7.7 are used for evaluation in Chapter 8. If these initial approaches

are promising, I hope to further develop functions using these features.

Ideas (3) and (4) above follow the findings in the typicality study in Chapter 5. (3) is

only weakly supported for shape; we did not find a significant effect of typicality for ma-

terial. Therefore, in evaluation (Chapter 8), I examine a version of the algorithm that

does not take typicality into account. (4) became evident while constructing and piloting

the study in Chapter 5: visual properties can be interconnected with other properties.

Shape entails typical forms, material entails typical colors. Given an object made out of

tin, one can usually assume the object will be silver. That is, the material attribute tin
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entails the color attribute silver, or material(tin) ! color(silver). People appear

to use a false inference for these kinds of interconnections – a heuristic – for example,

calling a mug that is silver “metal” (even though it is ceramic). Similar interconnections

hold for material/opacity and shape/form (see Chapter 5). To my knowledge, this

tendency has not yet been addressed in work in referring expression generation. A pre-

liminary list of attributes and interconnected values (represented as words) is given in

Table 2.

Idea (5) is inspired by hypotheses for visual processing that suggest there is a ventral

(“what”) stream operating in parallel to a dorsal (“where”) stream. The idea of parallel

processing in language production is not new. Tests of language production processes

have found that speakers speak and plan simultaneously, using both a horizontal and

vertical aspect, with various levels operating in parallel as well as sequentially (Ferreira &

Swets, 2002). Lexical access to the lemmas of content words of a noun phrase may proceed

in parallel, although access to the noun may take longer than access to the adjective

(Schriefers, 1992). Applying this to the algorithm, there may be competition between

different properties in the separate pathways, such that those processed first are more

likely to be generated; because there is a length penalty, properties that take longer to

process are less likely to be added. For this algorithm, I do not handle differences in speed

(I assume that all properties are processed equally quickly, and this is especially important

for color and size, which are both generated simultaneously without length penalty),

but in future work implementing different speed differentials for different properties may

lead to further human-like variation.

The implementation of incrementality in this algorithm follows more directly work in

Pechmann (1989), but is a different view than that taken in the Incremental Algorithm

(Dale & Reiter, 1995); the incremental process here operates over attributes and objects

rather than operating over object attributes alone (see Chapter 2, Sections 2.2.2 and

2.2.3).
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Attribute Interconnected Example
color material material(tin) ! color(silver)
opacity material material(glass) ! opacity(clear)
sheen material material(aluminum) ! sheen(shiny)
feel form form(hairy) ! feel(soft)
form shape shape(star) ! form(with spikes)

Table 2. Example interconnected attributes.

As a final detail, the size algorithm introduced in Chapter 4 is called directly, as a function

within the full algorithm. This is used to determine whether generating a size modifier

is appropriate, and if so, which axes it should pick out.

7.5. The Algorithm

The algorithm constructs an identifying description, a description to identify a referent for

a hearer in a verbal (as opposed to literary) setting (see Chapter 2), given an object and

a scene that both speaker and hearer can see. The algorithm gives priority to properties

that are visually and linguistically salient, to non-deterministically generate descriptive

initial reference. From a computer vision input, an object can be a set of pixels with

RGB values and (x, y, height, width) coordinates in an image, corresponding to a single

inanimate referent. A scene is a set of such objects within an image.

7.5.1. Assumptions. The algorithm requires the following functionality and sys-

tem knowledge.

Provided by System:

• ↵
x

, a prior likelihood for the inclusion of attribute x.

• �
val

, a measure of the typicality of an attribute-value val for a given object cat-

egory returned from find_category.
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• �
val

, a measure of bottom-up visual saliency or “pop-out” of the given attribute-

value val (not currently implemented in evaluation).

• g, a parameter set at run-time specifying the weight to give to the description’s

length in the stochastic decision process. Used to create �. Default set to 5.

• CP, an ordered list of complex properties (CP) accessible at all times; attributes

are available from Table 1. In evaluation, ordered by corpus frequencies.

• SP, an unordered list of simple properties (SP) accessible at all times; attributes

also available from Table 1. In evaluation, ordered by corpus frequencies.

• fixate(scene, obj), a function that returns a visual representation of the object

obj in scene. This is represented as a set of visual properties each associated

to a multi-featured vector of features, e.g., histogram values for luminance and

hue (see Figure 4).

• scene, a list of objects in the visual scene under consideration, where each object

is represented as a set of attributes, and each attribute associated to a vector of

visual features for that attribute (such as hue, luminance and saturation values

for the attribute color). The order of objects in the list will correspond to the

order in which they are fixated.

• do_attribute(obj, scene, att), a function that returns a value for an attribute

given the visual characteristics of the object, calling different processes for each

attribute.

For example, for size, this would be the output of the algorithm introduced in

Chapter 4, e.g., <over, +> (see Figure 6).

• lemma(att, val, category), a function that returns a linguistic specification of

the word or phrase to be generated for an attribute-value, optionally given the

category of the object.
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For example, for the size value <over, +>, this could return “big” with a prenom-

inal specification (see Figure 7). If available, object category may be used to

help determine the lemma (for example, color lemmas may depend on the object

type).

• lemma(att, val, category, dval), same as above, but may additionally create lem-

mas based on comparison to a comparator object value dval (for example, to

create “the one that is not X”).

• KB.find_category(obj), a knowledge base function that returns a propositional

representation of the range of typical attribute-values for the given object obj

along with its category.

For example, if kept very simple and semantic values are represented as words,

this may provide an object representation from McRae’s norms (see Figure 5).

Once accessed, this is available at all times.

• KB.interconnected(att), a knowledge base function that returns a list of the typ-

ical interconnected attributes for a given attribute att.

For example, for the attribute color, this would return material (see Table 2).

• KB.implies(att, val, i_att, ival), a knowledge base function that checks if an in-

terconnected attribute-value is implied by the current attribute-value.

For example, using simplified attribute-values (not RGB values), color tan

implies material wood.

The algorithm itself defines values with the following variables and functions:

Functions and Variables Defined by Algorithm:

• r, a list that stores the identifying description being created. Each member of

the list is a lemma for an attribute-value.
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• �, a penalty for the inclusion of a lemma given the length of the expression

constructed so far.

• att; i_att, an attribute such as color, size, etc.

• val; ival; dval semantic values for a given attribute, such as <217, 70, 0> for

color. These are simplified in evaluation to just be, e.g., red.

• known_attributes, a dictionary accessible at all times, which stores attributes

and values as they become known in the algorithm.

• refer(obj, scene), a high-level function that calls to functions to find the object

category, create lemmas for the identifying description, and returns the final

identifying description.

• analyze_SP(obj, scene, r), a function that analyzes color and other simple

properties that the color value implies (such as material values) in parallel

with size, location, and orientation.

• check_interconn(obj, s, att, val, r), a function that searches for further attribute-

values of the referent r that are implied by the given attribute att and value val.

For example, if color is tan, then material wood will be found.

• add_lemma(att, val, length(r)), a function that stochastically adds a lemma for

the given attribute-value, using ↵
att

, cat.�
val

if available, and the length of the

description constructed so far.

• add_lemma(att, val, length(r), dval), same as above, but used near the end of

the algorithm, when the target object is compared to other comparator objects

in the scene. This allows the function to additionally use the comparator ob-

ject’s attribute-value (dval) to determine the lemma – for example, generating

“not the red one”.
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• analyze_CP(obj, scene, r), a function that analyzes complex attributes, such

as material, texture, etc. (See Table 1.)

• incremental_obj(obj, scene, r), a function that incrementally scans the objects

in the scene, finding objects of the same type that have different attribute-values

than the target referent; these may then be added to the identifying description

in the add_lemma function.

• throw_dice(↵
att

, cat.�
val

, �
val

, len), the stochastic function that determines whether

a lemma should be created, and discussed in greater detail in Section 7.4. Uses

↵
att

, � (a penalty based on the description’s length), cat.�
val

if typicality is being

analyzed (otherwise this value is set to 1.0), and �
val

(in the current implemen-

tation, this is also 1.0 across the board).

7.5.2. Pseudocode. Below is the pseudocode for the algorithm in Figure 3, starting

with func refer. The full identifying description is stored in r.

7.5.3. Inputs and Outputs. I assume the presence of some main function that

provides functionality for fixating on objects, and given a particular target referent object

(indexed by, e.g., an object ID), calls refer. The previous fixation function should return

the visual representation of this object, represented as a bounding box with size (height,

width) and minimum coordinates (x, y). Following visual processing, we can characterize

the region of the object by the RGB values of its pixels and the distribution of hue h,

luminance l, saturation s. Corners c, and edges e, as detected by, e.g., a canny edge

detector, may also be represented here. I require that this function return an obj object,

with data structures corresponding to these features. An example is given below for a

hypothetical function fixate (Figure 4).

Once the object has a basic visual representation from this function, refer begins the

process of generating an identifying description. Throughout this process, lemmas are
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01 func refer(obj, scene):

02 r = <>

03 // Parallel process 1
04 cat = KB.find_category(obj)
05 // Parallel process 2
06 r = analyze_SP(obj, scene, r)
07 r = analyze_CP(obj, scene, r)
08 // End parallel processes
09 r = incremental_obj(obj, scene, r)
10 r += <cat.type>
11 return r

12 func analyze_SP(obj, scene, r):

13 // Parallel process 1
14 att = ‘COLOR’
15 val = do_attribute(obj, scene, att)
16 known_attributes[att] = val
17 r += check_interconn(obj, scene, att, val, r)
18 r += add_lemma(att, val, length(r))
19 // Parallel process 2
20 for att 2 <‘SIZE’, ‘LOCATION’, ‘ORIENTATION’>:
21 val = do_attribute(obj, scene, att)
22 known_attributes[att] = val
23 r += add_lemma(att, val, length(r))
24 return r

25 func check_interconn(obj, s, att, val, r):

26 i = <>
27 for i_att of KB.interconnected(att):
28 ival = do_attribute(obj, s, i_att)
29 known_attributes[i_att] = ival
30 if KB.implies(att, val, i_att, ival):
31 i += add_lemma(i_att, ival, length(r))
32 return i

33 func analyze_CP(obj, scene, r):

34 for att 2 CP:
35 if att 62 known_attributes:
36 val = do_attribute(obj, scene, att)
37 known_attributes[att] = val
38 else:

39 val = known_attributes[att]
40 r += check_interconn(obj, scene, att, val, r)
41 r += add_lemma(att, val, length(r))
42 return r

43 func incremental_obj(obj, scene, r):

44 for d in scene:
45 dobj = fixate(scene, d)
46 dcat = find_category(dobj)
47 if dcat.type == cat.type:
48 for att 2 CP [ SP:
49 dval = do_attribute(dobj, scene, att)
50 val = known_attributes[att]
51 if dval != val:
52 l = add_lemma(att, val, length(r), dval)
53 if l not in r:
54 r += l
55 return r

56 func add_lemma(att, val, len, dval=None):

57 l = <>
58 if cat:
59 if dval:
60 l = lemma(att, val, cat.type, dval)
61 else:

62 if throw_dice(↵
att

, cat.�
val

, �
val

, len):
63 l = lemma(att, val, cat.type)
64 else:

65 if throw_dice(↵
att

, 1.0, �
val

, len):
66 l = lemma(att, val)
67 return l

68 func throw_dice(↵

x

, �

y

, �

y

, len):

69 if len == 0:
70 � = 1.0
71 else:

72 � = 1/(len * g)
73 weight_function = ↵

x

* �
y

* � + (1-�
y

) * (1 - (↵
x

* �
y

))
74 n = random number between 0 and 1
75 if n < weight_function:
76 return True
77 return False

Figure 3. Algorithm for generating identifying descriptions. The bot-
tom function throw_dice represents the stochastic decision process used
throughout the algorithm to decide whether or not to add a lemma to the
description.
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fixate input: image
bounding box: sizeh

63, 63
i coordinatesh

1, 10
i

fixate output: obj2

6666666664

hue : h

luminance : l

saturation : s

corners : c

edges : e

RGBpixels : r

3

7777777775

Figure 4. Function fixate input and output.

created, and so can be associated to words and generated on-the-fly; such an extension

would allow the process to be interrupted, e.g., by a hearer in a dialogue.

The function refer runs two parallel processes. In the first process (line 04), find_category

returns a stored representation cat of what this object is and what it typically looks like.2

If a known category exists, this supplies a type (cat.type) that may be used to realize a

head noun for the object, and a list of typical properties for the object. If it does not

exist, cat is False. In this case, a placeholder word (e.g., “thingie”) may be generated.

An example category is given below in Figure 5, taken from McRae’s norms.

Attribute Value
type: bowl
color: different colors
shape: round
material: plastic, ceramic
form: curved
uses: eating, soup, food, liquids, eating cereal, holding things, mixing
found in: kitchen
associated with: spoon

Figure 5. Example category for bowl. Adapted from McRae’s norms
(McRae, 2011).

2This is similar to Rosch’s (1976) notion of a prototype and Wu and Barsalou’s (2009) notion of a
situated concept, although I do not expect this to directly correspond to any cognitive model.
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In the second parallel process (lines 06–07), visual attributes of the object begin to be

associated to semantic values and non-deterministically added to the identifying descrip-

tion r as lemmas. First simple properties are analyzed in analyze_SP, then complex

properties in analyze_CP.

Function analyze_SP takes as input a vector-based representation of the objects in the

scene and the ID of the target referent (See Figure 8). It runs two parallel processes:

one for the absolute property of color (lines 14–18) and one for the relative properties

size, location and orientation (lines 20–23). Inspired by Pechmann (1989), these

latter properties that require comparison processes are analyzed incrementally.

Stepping through the first parallel process in analyze_SP, the function do_attribute (line

18) returns the color value for the object as a function of its hues, luminances, satura-

tions, and RGB values. See Figures 6 and 7 for an example. A lemma for this value

is not immediately added. First, the check_interconn function is called in line 17. For

each attribute that color typically suggests (line 27), if the color value implies another

attribute-value true of the referent (line 30), this implied attribute-value is possibly as-

sociated to a lemma (line 31). For example, if the object is made of wood, and the value

for color is tan, then material wood may be added to the description before color

tan is.

Note that this means that both a lemma for a property and a lemma inferentially related

to a property can be included by the algorithm, and this may result in redundant inclusion

of properties; a material lemma may be included because it is suggested by color, and

it may also be included as part of analyze_CP. This redundancy is intentional. During

evaluation, I ignore (do not generate) repeat properties, but this method of redundant

generation opens the possibility of generating redundant properties if desired.

Stepping through the second parallel process in analyze_SP, values for size, location,

and orientation are created. This comparison process is based on the average visual

impression of the scene (its “gist”) and not comparison against individual objects. In the
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do_attribute input: object location in image, image, size
do_attribute output: <over, +> (from algorithm in Chapter 4)

do_attribute input: object location in image, image, color
do_attribute output: Average RGB value: <240, 30, 180>

Figure 6. Example of function do_attribute inputs and outputs, for
color and size.

lemma input: <over, ->, size
lemma output: prenominal: <small, smaller, little . . .>

postnominal: <that is little, that is smaller . . .>
Figure 7. Example of function lemma input and outputs.

case of size, this means that the target object’s dimensions are compared against the

average height and width of other objects of the same type in the scene, as in Chapter

4. In the case of orientation, this could correspond to which orientation “pops out”

(Treisman & Gelade, 1980) compared to average surrounding orientations; and in the case

of location this is a general placement within the image (e.g., right, left, top, bottom)

rather than location relative to another object or group of objects. For each value, a

lemma is stochastically added using the add_lemma function. After analyze_SP is

complete, it returns the identifying description constructed so far, r (line 06) (See Figure

8).

The algorithm then begins analyzing further properties in analyze_CP (lines 33–42).

The input to this function is identical to analyze_CP, but the identifying description r

is partially constructed following the output of analyze_SP. For each of the attributes

in the ordered list CP, the algorithm calls to a function to return the attribute-value and

checks for interconnected attributes (lines 38–43). A lemma for each attribute-value is

stochastically added to r (line 44), with the probability of adding a further lemma quickly

diminishing as the length of the identifying description increases. After analyze_CP is

complete, it returns the identifying description constructed so far, r (line 10). At this

point, the algorithm should have found the object’s category (if available) from line 07.
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analyze_SP input:

obj: obj1

scene: 2

66666666666666666666666666666666666666666666666666666666666666666664

obj12

666666666666664

hue : h

luminance : l

saturation : s

corners : c

edges : e

RGBpixels : r

boundingbox : sizeh
63, 63

i coordinatesh
1, 10

i

3

777777777777775

obj22

666666666666664

hue : h2

luminance : l2

saturation : s2

corners : c2

edges : e2

RGBpixels : r2

boundingbox : sizeh
80, 100

i coordinatesh
30, 80

i

3

777777777777775

obj32

666666666666664

hue : h3

luminance : l3

saturation : s3

corners : c3

edges : e3

RGBpixels : r3

boundingbox : sizeh
60, 75

i coordinatesh
100, 150

i

3

777777777777775

3

77777777777777777777777777777777777777777777777777777777777777777775

r: <>

analyze_SP output:
<color:red, size:small>

Figure 8. Example of function analyze_SP input and output.
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This ends the parallel processes. Each object in the scene is then incrementally fixated

on in incremental_obj (lines 43–55). If an object is found that is of the same type as

the target object (line 47), then any attribute-values in which the two objects differ (line

51) are stochastically added to the identifying description (line 52).3 The add_lemma

function additionally gets the value of the comparator object as well as the target object,

allowing the lemma function to optionally create negated comparison statements (“the

one that is not red”).

When incremental_obj is complete, the object category is added to the identifying de-

scription (line 10) and the algorithm is finished.

7.5.4. An Example. To see how this algorithm works, we will consider an example

in detail. Running the algorithm a large number of times can give us a distribution over

several possible outputs; for the sake of example, let us consider a likely pass through

the algorithm. Suppose the task is to create a referring expression for obj in the scene

scene (Figure 9). A previous step has provided the algorithm with visual properties of

the area where the object is located, as in Figure 10.

Once refer is called, it initializes r to an empty set. find_category and analyze_SP are

then both called in parallel, and the algorithm begins searching for a stored representation

of the object while it analyzes the simple visual properties of color and size. For this

color, there is no interconnected material, and no typical color for the object category.

↵
color

has a high value since color tends to be included in description, and there is no

penalty for including another lemma because there are no lemmas yet created in this

expression. The algorithm therefore has a high probability of adding a lemma for the

color value to r; for this example, the adjective red.
3Note that the outcome of the incremental scanning of objects will depend on the order in which

the items are viewed, and object fixation patterns during free viewing are notoriously difficult to predict
(Underwood, Templeman, Lamming, & Foulsham, 2008; Griffin & Bock, 2000). The effect of this is that
expressions may be longer, and include redundant information, if an object of the same type is in the
scene. Such an approach is also in line with previous research that shows an attribute such as colour
is more likely to be included when scene variation is high (Koolen et al., 2011). Luckily, this scanning
is relatively late in the algorithm, and so will not have as strong an effect as earlier processes on the
selection of attribute-values.
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obj:

scene:

Figure 9. Example object and scene.

obj2

66666666666666666664

hue : 2

64
R :<181 : 1596, 180 : 1303, 179 : 1301 . . .>
G :<29 : 1524, 27 : 1449, 23 : 1395 . . .>
B :<32 : 1628, 31 : 1528, 28 : 1472 . . .>

3

75

luminance : 2

66664

10 : .20

20 : .40

30 : .40

40 : .50

3

77775

...

3

77777777777777777775

Figure 10. Partial visual representation of object, represented as a series
of histograms, low level visual features.



Chapter 7.5 Page 182

Simultaneously, the object’s size is analyzed; its height and width may be within the

realm of typical for this object, but there are several other objects in the scene with

which we can compare an average height and width, calling the size algorithm from

Chapter 4. This returns <over, ->. ↵
size

and length(r) again yield a relatively high

probability, and so a lemma will likely be added to r, for this example, small. location

is next analyzed, followed by orientation, and values for these may be stochastically

added as well. There is some competition between the two parallel processes: sometimes

color lemmas may be processed faster than size, and vice versa, which could affect the

length of the description and the likelihood of generating one of the other. For the current

implementation, I assume that the length penalty for two properties on mirrored sides

of the parallel process are equal; the length from one process does not affect the length

penalty of the other until both are completed and the next properties are considered.

Complex properties are next analyzed in analyze_CP, and the algorithm first finds the

material attribute to be a typical value for this object. Because ↵
material

yields a

relatively high probability, meaning material tends to be included in expressions and

�
val

yields some probability, since the typicality of the material value is not the highest,

the algorithm may add a lemma for this value to the expression. However, at this point

the expression is likely to be relatively long (including adjectives for color and size),

which is penalized by �; and so it will only create the adjective plastic some of the time,

e.g., if there are not already 3 adjectives selected. With 3 adjectives created, the length-

based penalty will make it very unlikely the algorithm will create further words. If the

generated expression is still relatively short and no other attributes are selected to be

included, then scanning the rest of the objects in the scene (line 46) may return a further

modifier marking a difference between the referent and other objects, for example, a

realization of the sheen value, less shiny.

The algorithm will therefore likely generate structures for several different expressions

with different frequencies. If we run the algorithm 1,000 times, we can get a distribution



Chapter 7.6 Page 183

over several possible forms, e.g.,:

Example Surface Form Example Frequency

red fork .70

red fork in the middle .08

small red fork .14

small red fork at the top .04

red plastic fork .02

small red plastic fork .01

plastic red fork that is less shiny .001

(etc...)

As in the human data, these outputs are not normally distributed, with a preference for

short phrases with color modifiers.

7.6. Discussion

In this algorithm, I attempt to optimally bring together together previous work with

findings in this thesis. In analyze_SP, I follow the findings in Chapters 3 and 4 that the

properties of color and size are particularly salient for referring in visual domains, and

implement this by following work in vision by defining two parallel processes, one for the

“what” pathway, defining color, and one from the “where” pathway, defining size, ori-

entation, and location (Kosslyn, 1994; Murata, Gallese, Luppino, Kaseda, & Sakata,

2000). In future work, implementing different speed differentials for different properties

may lead to further human-like variation. For example, the speed at which material is

processed as an interconnected property to color may affect whether or not location

is included; for now, color (and interconnected properties) are processed as simulta-

neous with size, affecting the length penalty for complex properties and location and

orientation only after they have been processed. This would allow something like
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color to sometimes ‘win’ over size, affecting the length parameter in the decision for

whether or not to include size in the description.

Further drawing from work in vision and computer vision, I define color in terms of

a multi-featured space of hues, luminances, etc. (Farhadi et al., 2009), and follow the

experiments and models developed in Chapter 4 by defining size in terms of a multi-

featured space of dimensions of the object and other objects in the scene.

In check_interconn, I follow the findings from Chapter 5 that certain attributes are

interconnected, and in particular, color is interconnected with material; the algorithm

therefore is less likely to include a color modifier and more likely to include a material

modifier if the color suggests the material. In analyze_CP, I follow traditional NLG

methods by analyzing properties incrementally, but add a specification of which visual

attributes that this applies to.

In incremental_obj, I follow Pechmann (1989), but differ from traditional NLG methods,

allowing objects themselves to be analyzed incrementally.

For all of these functions, a stochastic decision-making processes is used to reflect the

speaker variance we find throughout the thesis. This captures the notion that people

tend to include atypical properties of objects, established in Chapter 5, and the fact that

the longer the expression, the less likely it is to be produced.

I have not here addressed reference to more complicated spatial relations, such as topo-

logical or projective relations (Kelleher & Kruijff, 2006), part-whole relations, sets, or

objects in video rather than still images. I hope that the current work provides a strong

basis from which to further research in these areas.

In the next chapter, I evaluate how well this algorithm performs in several corpora of

visible objects.
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Visible Objects Algorithm: Evaluation

8.1. Introduction

This chapter provides several evaluations of the algorithm introduced in Chapter 7. The

proposed algorithm, which I will call the Visible Objects Algorithm, was designed to

approximate human variation within a verbal (non-literary) setting introducing an object

into the discourse within a group of visible, real world objects. To understand how

well the algorithm performs and how it compares to the state of the art, I compare

the proposed algorithm against implementations of two algorithms commonly used in

referring expression generation: the Incremental Algorithm (IA) (Dale & Reiter, 1995)

and the Graph-Based Algorithm (Graph) (Krahmer et al., 2003). (See Chapter 2 for a

review of these algorithms.) Neither the Incremental Algorithm nor the Graph-Based

Algorithm were developed specifically for the domain of reference to visible objects,

but instead were intended to be general purpose algorithms, and I return to this issue

in Section 8.5; to my knowledge, no REG algorithm has been developed from scratch

especially for reference to visible objects (although both the IA and Graph have been built

upon for visual domains; see Chapter 2). These evaluations therefore serve to introduce a

new approach to generating referring expressions, creating specific algorithms for specific

modalities.

I first establish that the Visible Objects Algorithm is reasonably effective at generat-

ing human-like expressions and is competitive with implementations of previous algo-

rithms by evaluating all algorithms on two well-known REG corpora, the GRE3D3 cor-

pus (Viethen & Dale, 2008) and the TUNA corpus (van Deemter et al., 2006). Because

the algorithm is non-deterministic, I run it a number of times and compare its generated
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sets against the observed human expressions. Both corpora contain expressions elicited

to images of computer-generated objects, and so provide a reasonable starting point for

evaluating reference to visible objects. To explore how well the algorithm approximates

human reference to real world objects, I additionally evaluate on a third corpus of real

objects sitting on a table, the Typicality corpus introduced in Chapter 5. For all algo-

rithms, I evaluate the selection of referent attributes. Lexical choice, word order, and

attribute values are not taken into account.

Table 1 lists the algorithms and corpora used in this chapter. Example objects from the

GRE3D3 corpus, the TUNA corpus, and the Typicality corpus are shown in Figure 1.

I will first briefly summarize how each corpus highlights different aspects of the Visible

Objects Algorithm, and then discuss the evaluation measures I use (Section 8.3) and

implementation details for each of the algorithms (Section 8.4). Further details about the

corpora and input/output for the algorithms is available within each evaluation section.

Section 8.6 details evaluation on the GRE3D3 corpus, Section 8.7 details evaluation on

the TUNA corpus, and Section 8.8 the Typicality corpus.

Algorithms Used in Evaluation Corpora Used in Evaluation
The Incremental Algorithm GRE3D3 Corpus
The Graph-Based Algorithm TUNA Corpus
The Visible Objects Algorithm (proposed) Typicality Corpus

Table 1. Algorithms and corpora in evaluation.

8.2. Overview of Corpora

The GRE3D3 corpus is useful for testing some of the basic ideas behind the proposed

algorithm: the selection of color and size in two separate processes and the use of

prior likelihoods and description length to select attributes for the description. The latter

attribute selection process is an alternative to selecting attributes based on whether they

rule out comparator objects; ruling out comparator (or distractor) objects is a main

attribute selection criterion in the IA and Graph. The GRE3D3 corpus therefore serves
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TUNA corpus GRE3D3 corpus

Typicality corpus
Figure 1. Example items from corpora.

as a simple, semantically transparent corpus for evaluating the most commonly discussed

attributes in generating reference to objects (color and size) for all algorithms.

The TUNA corpus allows us to extend the evaluation slightly farther, adding the typical-

ity aspect of the proposed algorithm, and specifically looking at the typicality of color.

The Visible Objects Algorithm’s choice to include a lemma for an object’s color in this

domain is based not only on the length of the description created up to that point and

the prior likelihood of color being included in the final expression (as in the GRE3D3
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corpus), but may also be based on how typical the color of the object is. The TUNA

corpus also contains expressions elicited to black and white images of people, but because

this thesis focuses explicitly on reference to inanimate objects (which people may process

differently than animals and people – see Chapter 2), I do not include this section of

the TUNA corpus. The TUNA furniture sub-corpus therefore serves to again test the

common attributes of color and size, but in a different domain; in this domain, the

objects are more complex objects images of furniture rather than the simple geometric

objects in the GRE3D3 corpus, and may introduce issues of typicality. This allows us to

understand how the algorithms fare with both simple and complex objects.

The final corpus in these evaluations, the Typicality corpus, allows us to make a leap

towards the realm of real world objects and address typicality more directly, using real

objects on a table with one typical and one atypical property. It also allows us to evaluate

on the selection of complex properties: Recall that the vision-inspired approach I propose

makes a distinction between the simple absolute property of color, the simple relative

properties of size, location, and orientation, and the complex properties of shape,

material, etc. The previous two corpora use a small set of properties which I have

called simple, and most of the properties are relative (size, location/orientation).

The Typicality corpus adds the complex properties of shape and material, which have

not received a great deal of attention in work on reference generation, in addition to the

more common attributes of color, size, etc.

The GRE3D3 and TUNA corpora contain expressions elicited to simple computer-generated

objects, and the Typicality corpus contains expressions elicited to real world objects

within a more complex task. These evaluations therefore shed some light on the breadth

of the algorithms’ capabilities, evaluating on both semantically transparent domains

(GRE3D3, TUNA) and more complex real world domains (Typicality).

Another reason it is useful to look at all three corpora is because of the possible difference

in the registers of the corpora: it is an open question whether TUNA and GRE3D3
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may be considered corpora of literary expressions or corpora of more conversational

or verbal expressions (see Chapter 2). One thing this evaluation tests is whether the

proposed algorithm, which uses a more verbal/conversational account of reference, does

better at capturing the observed expressions in these corpora than algorithms like the

IA and Graph, which make a literary assumption. In contrast to TUNA and GRE3D3,

expressions were produced orally in the Typicality corpus, with a real hearer present,

viewing the same scene; it is therefore useful to see how the algorithms perform across

these different corpora. It may be the case that IA and Graph do better at the more

literary TUNA and GRE3D3 corpora, whereas the proposed algorithm does better at

the clearly verbal Typicality corpus. In fact, we find that the proposed algorithm does

as well as or better than Graph and IA on all three corpora, suggesting that overall, a

conversational, descriptive view of initial reference may be more suited to how speakers

introduce referents in visual domains.

As has been detailed in previous chapters, modifier inclusion is not normally distributed.

This is clear examining expressions in the REG corpora, where we find that there are

preferences for some expressions over others (for example, short expressions containing

color modifiers). To evaluate, we must measure how well the expressions produced by

the various algorithms match the observed distribution.

8.3. Evaluation Measures

Throughout this chapter, I discuss evaluation using attribute sets for a referent. A human-

produced attribute set is the set of attributes annotated for a human’s referring expression

for a referent, such as we find in the GRE3D3, TUNA, and Typicality corpora. A

predicted attribute set is the set of attributes predicted by an algorithm for a referent. I

first represent each member of an attribute set as a triple x : y : z where x is the object

ID, y is the attribute, and z is the value. In evaluation, I only look at attributes of the

target referent and treat values as boolean. An example is shown in Table 2.
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Example Corresponding Evaluated
Expression Attribute Set Attribute Set
the red ball tg:type:ball tg:color:red tg:type:1 tg:color:1 tg:size:0 tg:location:0

Table 2. Example human-produced expression and corresponding at-
tribute sets for evaluation with attributes type, color, size, and lo-
cation.

8.3.1. Background. It is not immediately obvious how to evaluate a stochastic

algorithm. Previous evaluation of REG algorithms have used measurements such as

Uniqueness, Minimality, Dice (Belz & Gatt, 2008), Accuracy, String-edit distance, BLEU,

NIST, and ROUGE (Gatt, Belz, & Kow, 2009; Reiter & Belz, 2009). Uniqueness is the

proportion of attribute sets generated by a system that identify the referent uniquely, and

Minimality is the proportion of attribute sets that are both minimal and unique. As my

goal is to generate natural, human-like reference, and humans occasionally underspecify

(e.g., do not always identify the referent uniquely, at least by using only object attributes),

these metrics are not as useful for the evaluations as the others.

Accuracy and Dice measure the proportion of attribute sets generated by a system that

match the corresponding corpus attribute sets. Accuracy is a measure of the proportion

of attribute sets that match perfectly, and Dice is a measure of the overlap between

attributes within two sets. These are useful for measuring how well a system’s output

matches a human’s output, and I therefore use these metrics in the evaluation. Since the

proposed algorithm is stochastic, this introduces a problem in using Dice, as the group

of observed attribute sets for a referent and the group of predicted attribute sets for a

referent must somehow be aligned. I discuss this in further detail below.

String-edit distance (also known as Levenshtein distance) measures the minimal number of

insertions, deletions and substitutions required to transform a system’s output attribute

set to the reference attribute set. In these evaluations, the number of attributes in the

system’s output attribute set is always equal to the number of attributes in the human-

produced attribute set, making String-edit distance proportional to Accuracy.
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Attribute Set Attribute Set
Produced by Produced by Surface Form
Algorithm People
tg:type:fan tg:size:small tg:type:fan tg:size:small small fan
tg:type:fan tg:size:small tg:type:fan tg:size:small

tg:rel_location:lm,above
lm:type:desk
lm:color:green

small fan above a green desk

Table 3. Example attribute sets produced by algorithms and people. As-
pects of the human-produced descriptions that I do not address are shown
in grey. Object attributes are treated as binary, included or excluded.

BLEU, NIST, and ROUGE are n-gram based string comparison measures commonly used

in evaluating machine translation systems and measure the amount of overlap between

the output string and the reference string. I have not experimented with using these

last methods. A further method has recently been used for the purpose of evaluating

a stochastic algorithm in van Gompel et al. (2012). This measures the likelihood that

the algorithm will predict the corpus of attribute sets observed in the participant’s data

as the probability density function for the predicted distribution. Further details are

provided below.

8.3.2. Method. In order to compare the stochastic Visible Objects Algorithm to

the deterministic algorithms, I evaluate all algorithms in two ways. I further provide

qualitative comparisons between the observed attribute sets and the predicted attribute

sets using the distributional method reported in van Gompel et al. (2012).1 In all evalu-

ation methods, attributes are treated as boolean: I do not evaluate on the chosen value,

but whether the attribute has been selected or not. Ignoring the attribute’s value is es-

pecially important in the Typicality corpus, where participants often report an incorrect

value.

In the first evaluation method, which I will call MaxAlign, I measure both Accuracy

and Dice. Because the proposed algorithm is stochastic, how accurate its predictions are

1Further details provided by discussions with the authors.
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depends on how its predicted attribute sets are aligned to the observed attribute set.

In MaxAlign, I thus find the optimal alignment between the two corpora, yielding the

algorithm’s maximum Accuracy/Dice score for the evaluation corpus. For the corpus of

observed attribute sets I and the corpus of generated attribute sets J , I seek to find the

best alignment x out of all possible alignments X between the corpora. The alignment

score for two attribute sets i, j is calculated as the number of attributes i
p

and j
p

from

the attributes p 2 P that are both included or both excluded, normalized by the number

of properties being evaluated. In other words,

MaxAlign = argmax

x2X
X

(i,j)2x

Alignment(i, j)

where

Alignment(i, j) =
X

p2P

(i
p

^ j
p

) _ (¬i
p

^ ¬j
p

)

|P |

A given set of properties such as <a, b> would therefore be treated as <a, b, not c, not

d>. Calculating the alignment score over the number of evaluated properties (|P|) has

the nice mathematical property of making Alignment equal to other common metrics

for evaluating a model, including Accuracy, Dice, Precision, and Recall. It also allows

us to limit each evaluation to the set of properties that have been annotated in each

corpus. Note that because IA and Graph are deterministic, finding an optimal alignment

is trivial. Because the proposed algorithm is non-deterministic, we run it five times for

each scene, and calculate the average score for each.

It is an open question whether the MaxAlign evaluation is fair: Because the proposed

algorithm is stochastic and the other algorithms are not, a higher score for the proposed

algorithm is due to more alignment options. In the second evaluation method I address

this issue, comparing how well the Visible Objects Algorithm’s most likely predicted

attribute set compares with the IA and Graph’s predicted attribute set.

The second evaluation method, which I will call Maj, measures whether the most frequent

predicted attribute set out of all the predicted attribute sets corresponds to the observed
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majority attribute set. Given a target referent t, we can define the boolean-valued variable

Match
t

, where:

Match
t

=

8
>><

>>:

1 if most frequently predicted = most frequently observed

0 otherwise

Calculating these scores over several evaluation targets t 2 T , we can obtain the propor-

tion of targets that have a majority match:

Maj =

X

t2T

Match
t

|T |

This is a simple way to fairly compare the output of deterministic and non-deterministic

algorithms. This evaluation method is limited to those observed attribute sets that

include only attributes under consideration. Parts of an attribute set that include a

description of a relatum are excluded from the analysis (e.g., for the phrase “sphere on

top of the red cube”, annotations related to “red cube” are ignored). There are no ties in

the predicted sets, but in the case of a tie in the observed data (more than one attribute

set with the highest frequency), I count a match if any of the members of the tie match

the most frequent predicted attribute set.

In the third method, Frequency Prediction (FreqPred), I determine the likelihood that

the proposed Visible Objects Algorithm will produce the observed corpus of attribute

sets. In other words, from the distribution over outputs produced by the algorithm,

this method provides the likelihood that the algorithm will produce the observed corpus

frequencies. This allows us to see how well the distribution of attribute sets predicted by

the algorithm for a referent reflects the variation in people’s reference. The nice thing

about a distributional analysis is it shows us what kinds of expressions the algorithm

fails to predict; it provides a qualitative analysis of the attribute sets that the algorithm

is not predicting, or not predicting enough of.
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For the Graph-Based Algorithm and the Incremental Algorithm, this likelihood of pre-

dicting the variation in the observed corpus is always 0.0; people do not all produce the

same attribute set for a referent in any of the corpora, and neither algorithm predicts

more than one attribute set for a given referent. For the Visible Objects Algorithm, I pro-

duce a model that defines a multinomial probability distribution d over k attribute sets

by running the algorithm 1,000 times and estimate the likelihood for each attribute set

using maximum likelihood estimation. I then calculate the likelihood that the observed

data – the corpus of human-produced attribute sets – would be predicted by the model

as the probability density function (pdf) for the Visible Object Algorithm’s predicted

distribution. In other words, given the observed data x composed of n participants’

attribute sets, we can calculate p(x|d, n) as:

p(x|d, n) = n!
x1!...xk!

dx1
1 ...dxk

k

where x = (x1, ..., xk

) gives the number of each of k attribute sets for n participants

with estimated likelihood d
k

for each. Put more simply, this measures the likelihood that

we’ll see each of our observations as frequently as we do, if we are generating from the

underlying probability distribution of the algorithm.

As in the majority evaluation, this evaluation is limited to those observed attribute

sets that include only attributes under consideration, and parts of an attribute set that

include a description of a relatum are excluded from the analysis. There is a large

degree of variation between each referent using this approach, and I report values for the

highest and lowest probabilities in each corpus along with qualitative results showing the

frequencies of predicted and observed attribute sets.

For each corpus I evaluate on, I report MaxAlign, Maj, and FreqPred using x-fold cross

validation. In each fold, I estimate parameters for the algorithms using the human-

produced expressions for all referents but one; the held-out referent then serves as the test

item. For MaxAlign, I run the algorithms to produce as many expressions as are observed,

and for Maj I run the Visible Objects Algorithm 1,000 times. I repeat this so that each
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referent in each corpus is a test item once, and report the average scores over all folds.

For FreqPred, I run the Visible Objects Algorithm 1,000 times, repeating this so that

each referent in each corpus is a test item once, and report some of the highest and lowest

scoring test scenes. The proposed algorithm is a bit of a black box; individual aspects of

the algorithm, such as parallelism or the selection of specific properties, still need to be

evaluated. However, by evaluating the algorithm using several different metrics, I hope

to capture whether it is a reasonable competitor to IA and Graph while for the first time

capturing speaker variation.

8.4. Implementations

8.4.1. The Incremental Algorithm. The version of the Incremental Algorithm I

use is available from the NLTK2 (Bird, Loper, & Klein, 2009). This algorithm requires

that the following be provided:

(1) A preference order list (PO) specifying the order to iterate through the at-

tributes.

(2) The attributes and values (properties) of all objects in the context set.

For (1), the problem of finding the best preference order for the Incremental Algorithm

was explored in detail by van Deemter et al. (2012). Looking at the TUNA furniture

sub-corpus, they find that an order with color followed by size yields the best results.

Orientation is the only other attribute considered in this domain, and changing its

position before or after size does not have a significant impact on performance. Other

approaches have decided preference orders based on corpus frequencies (Koolen, Krahmer,

& Theune, 2012), which also find a similar pattern of color before size.

In my implementation, I determine the preference order from corpus frequencies, using

x-fold cross-validation to determine the attribute frequencies in each training fold. What

I find is in line with van Deemter et al. (2012) – the preference order has color followed
2https://github.com/nltk/nltk_contrib/blob/master/nltk_contrib/referring.py retrieved

1.Aug.2012
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by size and then other properties like orientation, for the TUNA corpus. I report on

two versions of the Incremental Algorithm, one which places type – corresponding to

the head noun of the referent – as the first attribute in the preference order, and one

which places it as the last. We will see that the algorithm performs optimally with type

placed at the end of the preference order.

For GRE3D3 and the TUNA furniture corpus, providing (2), the attributes and values

of all objects in the context set, is straightforward; these corpora were built around

computer-generated objects with simple, easily distinguished properties. (Example input

to the algorithms for these corpora are shown for each of the evaluations, Figure 2 for

GRE3D3 and Figure 7 for TUNA.) For the Typicality corpus, with real world visible

objects, the problem is more complex.

The difficulty of defining attribute values for the Typicality corpus is especially evident

for the attributes of color and size. As discussed in Chapter 4, the Incremental Algo-

rithm requires that an object’s size be specified as, e.g., small or large before referring

expression generation begins; similarly, an object’s color must be predefined. However,

appropriate values for color and size are somewhat subjective, and it is unclear when

an attribute-value for an object can be said to be significantly different enough from

another. For example, are the two bowls shown in the Typicality corpus image in Figure

1 the same color? What about the rulers? For size, the question of size in comparison

to what arises. For example, the pushpins are small relative to the other objects in the

scene, but a normal size for a pushpin. The bowls are large relative to the scene, but

a normal size for a bowl. The boxes are small for boxes, but medium-sized relative to

the scene. It is unclear if size designations should be specified in comparison to other

items in the scene, in comparison to other items of the same type, or in comparison to

the size of the table. These decisions are fundamental to the algorithm, because the

inclusion of an attribute-value is dictated by whether it is different from other items in

the distractor set. With real world objects, the question is often whether the difference

for an attribute-value is different enough (and this may vary person to person).
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In order to evaluate the Incremental Algorithm on a real scene, we must make decisions

for these issues before we can run it. I therefore decide to encode the bowls, mugs,

envelopes, and screws as the same color; the rulers as light tan and tan; and the boxes

as light brown and dark brown. Because the generation of a size modifier for an object

is significantly more likely when there is another object of the same type in the scene

(Brown-Schmidt & Tanenhaus, 2006), I create size values by comparing the objects of

the same type. This method worked well for generating size modifiers in Chapter 4.

From this, I settle on using medium for all size values, with exception to the envelopes;

the envelope on the right in Figure 1 is labeled as big and the one on the left is labeled as

small. To aid comparison across the different algorithms, I use the same color and size

designations for the Graph-Based Algorithm, and the same color designations in the

Visible Objects Algorithm, discussed below. Example input to the algorithms following

these decisions is shown in the evaluation using this corpus, Figure 9.

8.4.2. The Graph-Based Algorithm. The version of the Graph-Based Algorithm

that I use is available from Viethen et al. (2008). This algorithm requires that the

following be provided:

(1) A set of cost functions for each edge.

(2) The attributes and values (properties) of all objects in the context set.

(3) A preference order for deciding between attributes in the case of a tie.

As originally introduced, a graph-based approach to REG is a framework for implement-

ing several different kinds of algorithms; the cost functions define the algorithm. Viethen

et al. (2008) develop an approach using frequency information to assign costs, with the

most frequent properties given a cost of 0 (free), the rarer properties a cost of 2 (expen-

sive), and all other properties a cost of 1. This approach was shown to work well: this

version of the Graph-Based Algorithm was the best performing system in the 2009 REG

Challenge (Gatt et al., 2009).
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Theune et al. (2011) find that using only two costs (0 and 1) achieves even better results,

using k-means clustering (with k=2) over the relative frequencies of attribute-values to

decide the cost. Following this method, I first determine the frequency with which each

property (attribute-value pair) was mentioned for a target object in the training data,

relative to the number of target objects with this property. Then I create a cost for

each property (either 0 or 1) using k-means clustering with the Weka toolkit (Hall et al.,

2009).

To briefly explain how this approach works, the k-means clustering algorithm partitions

n observations into k clusters (S1 to S
k

) by assigning each observation to the cluster

with the nearest mean. The total within-cluster sum of squares W is minimized by the

function:

W = argmin

x

kX

i=1

X

xj2Si

||x
j

� µ
i

||2

where µ
i

is the mean of the points x
i

2 S
i

. For Graph, each observation n corresponds

to an attribute-value pair, and relative frequency is the only dimension of the vector. µ
i

is thus the mean relative frequency of the properties in cluster S
i

. The clusters are then

ordered by their means and numbered. Costs are defined as follows:

8x
j

2 S
i

, cost(x
j

) = i� 1

For (2), providing the properties of all objects in the context set, the same problem of

what the attribute-values should be in a real world visual domain arises for the Graph-

Based Algorithm just as it did for the Incremental Algorithm. I therefore use the same

attribute-values for the Graph-Based Algorithm as for the Incremental Algorithm.

For (3), a preference order for deciding between attributes, I follow the same method

as for the Incremental Algorithm. I obtain a preference order from corpus frequencies,

using x-fold cross-validation to determine the attribute frequencies in each training fold

and ordering the attributes in descending frequency.
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8.4.3. The Visible Objects Algorithm. This algorithm is available through github.3

Introduced in Chapter 7, the algorithm is written to take in a visual scene represented

as a pixel-based image. To understand how the algorithm compares with the state of the

art in REG, I am primarily interested in evaluating the aspects of the algorithm that

handle the selection of attributes. This requires a stripped-down version of the algorithm,

without a fixate function (line 02) returning a visual representation of the object from

the image; this in turn requires that the find_category (line 07) function returns the

category of the object using something other than visual information.

To isolate the selection of attributes from the rest of the algorithm, I begin with a

“gold-standard” representation of the scene, written as object identifiers followed by their

properties, including a type attribute, comparable to the input for the Incremental and

Graph-Based Algorithms. An example input for all systems in the GRE3D3 domain is

given in Figure 2. Details of the annotated attribute-values are provided in Section 8.6.1.

The algorithm is therefore changed in the following ways:

• Instead of using a visual fixate function, an object representation is simply ac-

cessed from the dictionary scene using the object ID; this returns a set of

properties corresponding to the specified object.

• The KB.find_category function accesses the stored category information about

the object (typical properties) from the knowledge base based on the object’s

type.

• The do_attribute function, which is intended to analyze features of the object

within the scene and return a semantic representation for the attribute’s value

(e.g., <240, 30, 180> as a value for color) instead returns the gold-standard

attribute value from the scene representation (e.g., green for color).

• The function lemma can then just return the attribute value.

3https://github.com/itallow/VisibleObjectsAlgorithm.
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Scene:

GRE3D3 Scene Input to the Incremental and Graph-Based Algorithm:
tg color:yellow size:small type:ball location:right-hand rel_location:lm,on-top-of rel_location:obj3,right-of

lm color:red size:large type:cube location:right-hand rel_location:tg,below rel_location:obj3,right-of

obj3 color:yellow size:small type:cube location:left-hand rel_location:tg,left-of rel_location:lm,left-of

GRE3D3 Scene Input to the Simplified Visible Objects Algorithm:
tg color:yellow size:(63,63) type:ball location:right-hand rel_location:lm,on-top-of rel_location:obj3,right-of

lm color:red size:(345,345) type:cube location:right-hand rel_location:tg,below rel_location:obj3,right-of

obj3 color:yellow size:(70,70) type:cube location:left-hand rel_location:tg,left-of rel_location:lm,left-of

Figure 2. Example input to the algorithms: GRE3D3 Scene 7. On the
left is the object ID, followed by a vector of properties, represented as
attribute-value pairs. For size, the Visible Objects Algorithm is one step
closer to the raw visual input, using the height and width (height,width)
of the object. Evaluation measures the selection of the attribute (not its
value).

• We also do not need to store any of the object’s attribute values in the

known_attributes dictionary, because it becomes trivial to get them as many

times as we’d like from the object representation itself.

A list of these changes is available in Table 4. All attribute values are provided as gold-

standards except for size, for which we may get a bit closer to the visual input, defining

just the pixel height and width and bringing in the hand-written algorithm for size from

Chapter 4.

One aspect of the lemma creation process in left unimplemented: The role of visual

salience (�) in the selection of a property. This factor (as well as others, such as con-

versational salience) clearly play a role in generation; for now, I focus on how well the

algorithm performs when just attribute likelihoods (↵) and typicality likelihoods (�) are
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Function Change
main added; a given object’s properties indexed

from a scene dictionary provided as input.
KB.find_category returns KB object category given object type

rather than visual information.
do_attribute removed; gold-standard attribute value in-

stead accessed directly from dictionary for all
attributes except size. Size is determined us-
ing SizeMod, the algorithm from Chapter 4.

lemma removed; lemma now identical to val.
known_attributes removed; attribute values accessed directly

from obj.
scene changed to a representation of the object iden-

tifiers and their associated properties; akin to
the representation of a context set of earlier
work.

Table 4. Changes to Visible Objects Algorithm.

defined. This means that the stochastic algorithm from Chapter 7 is redefined as the

following:

p(y ! lemma|d) = ↵
x

⇥ � + (1� �
y

)⇥ (1� ↵
x

) (8.1)

A difficulty in implementation is the parallel processing of the proposed algorithm: paral-

lel processing makes the timing of the different processes a large factor in how it performs.

Without knowing how long the various mechanisms of the algorithm should take in order

to produce the most human-like output, I strive to find an implementation that does not

rely on timing, but can be represented more straight-forwardly, e.g., fully serially.

Following the pseudocode in Chapter 7 Section 7.5, parallel processing applies to the

functions of (1) Finding the object category (line 07); (2) Processing color, followed

incrementally by other entailed absolute properties (lines 17–21) and (3) Processing size,

followed incrementally by other relative properties (location and orientation, lines

23–26). To approximate this in an algorithm that runs serially, we can run all these
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processes in their written order. Since the first absolute property processed (color,

lines 17–19 and line 21) is simultaneous with the first relative property processed (size,

lines 23–26), in implementation we can approximate this by saying that the length of

the identifying description (length(r)) is 0 for both of these properties. This is a simpli-

fication, assuming the processing of color will take just as long as size: That is, if the

length penalty for both is 0, then it cannot have been the case that one was added to

the identifying description as a modifier before the other. I do not evaluate processing

different attributes simultaneously, with different times: For now, I simply evaluate the

independent selection of color and its interconnected properties from the selection of

size.

As discussed in Chapter 7 Section 7.5, the incremental_obj function iterates over the

objects in the scene, but the order is not specified. For my evaluations, the order I

use is simply the order in which the objects are listed in the various corpora. For the

GRE3D3 corpus, this order spans out in proximity from the target referent. For the

TUNA and Typicality corpus, the order is random. We also need to provide the order in

which complex properties should be analyzed (CP). I define this in the same way I define

the Incremental Algorithm’s preference order, defining the order of attributes based on

frequency in the training data.

With these changes, the evaluated algorithm follows the pseudocode written in Figure 3.

I additionally add a main function, called given scene – a dictionary listing all objects

with unique IDs and properties (as in Figure 2) – and the ID of the desired referent.

The simplified algorithm evaluated here therefore requires the following be provided:

(1) A prior distribution on the inclusion of different attributes. Represented in the

algorithm as ↵
att

.

(2) The properties of all objects in the scene. Represented in the algorithm as scene.

(3) A complex property list specifying the order in which to create lemmas for

complex properties. Represented in the algorithm as CP.
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01 func main(scene, referent_id):

02 obj = scene[referent_id]
03 r = refer(obj, scene)

04 func refer(obj, scene):

05 r = <>

06 cat = KB.find_category(obj[‘TYPE’])
07 r = analyze_SP(obj, scene, r)
08 r = analyze_CP(obj, scene, r)
09 r = incremental_obj(obj, scene, r)
10 r += <cat.type>
11 return r

12 func analyze_SP(obj, scene, r):

13 att = ‘COLOR’
14 val = obj[att]
15 r += check_interconn(obj, scene, att, val, r)
16 r += add_lemma(att, val, length(r))
17 for att 2 <‘SIZE’, ‘LOCATION’, ‘ORIENTATION’>:
18 if att == ‘SIZE’:
19 rx = obj[‘WIDTH’], ry = obj[‘HEIGHT’]
20 dx = average width, other scene objects
21 dy = average height, other scene objects
22 val = SizeMod(rx, ry, dx, dy)
23 r += add_lemma(att, val, 0)
24 else:

25 val = obj[att]
26 r += add_lemma(att, val, length(r))
27 return r

28 func check_interconn(obj, s, att, val, r):

29 i = <>
30 for i_att of KB.interconnected(att):
31 ival == obj[att]
33 if KB.implies(att, val, i_att, ival):
34 i += add_lemma(i_att, ival, length(r))
35 return i

36 func analyze_CP(obj, scene, r):

37 for att 2 CP:
39 val = obj[att]
43 r += check_interconn(obj, scene, att, val, r)
44 r += add_lemma(att, val, length(r))
45 return r

46 func incremental_obj(obj, scene, r):

47 for d in scene:
48 dobj = scene[d]
49 if dobj == obj:
50 continue
51 if dobj[‘TYPE’] != obj[‘TYPE’]:
52 continue
53 for att 2 CP [ SP:
54 if att == ‘SIZE’:
55 rx = obj[‘WIDTH’], ry = obj[‘HEIGHT’]
56 dx = dobj[‘WIDTH’], dy = dobj[‘HEIGHT’]
57 val = SizeMod(rx, ry, dx, dy)
58 else:

59 dval = dobj[att]
60 val = obj[att]
61 if dval != val:
62 l = add_lemma(att, val, length(r), dval)
63 if l not in r:
64 r += l
65 return r

66 func add_lemma(att, val, len, dval=None):

67 l = <>
68 if dval:
69 l = val
70 else:

71 if throw_dice(↵
att

, cat.�
val

, len):
72 l = val
73 return l

74 func throw_dice(↵

x

, �

y

, len):

75 if len == 0:
76 � = 1.0
77 else:

78 � = 1/(len * g)
79 weight_function = ↵

x

* � + (1 - �
y

) * (1 - ↵
x

)
80 n = random number between 0 and 1
81 if n < weight_function:
82 return True
83 return False

Figure 3. The algorithm: Implementation details. refer is called from
main, given scene – a dictionary listing all objects with unique IDs and
properties – and the ID of the desired referent.
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(4) A scan list specifying the order to iterate through other objects in the scene. This

implementation simply uses the order in which objects are listed for scene.

(5) A knowledge base (KB) available at all times with typical properties for objects,

and associated likelihoods. This information is accessed in the algorithm using

KB.find_category.

(6) A knowledge base (KB) available at all times with interconnected properties.

This information is accessed using KB.interconnected and KB.implies.

(1) is similar to the cost functions for the Graph-Based Algorithm, but allows the selection

of attributes to be non-deterministic; attributes are selected using prior likelihoods. (2)

is the same as the context set (or scene) provided for the previous algorithms, however I

leave size to be determined from the pixel measurements or metric measurements rather

than predefining it, bringing the input closer to the visual scene. (3) is similar to the

Incremental Algorithm’s preference order, but applies to the order in which complex

properties are realized linguistically. For the GRE3D3 and TUNA corpora, complex

properties are not available and so a complex property list is not used.

(4), (5), and (6) are novel to this algorithm. (4) defines an order in which to compare the

target object against other objects in the scene, similar to the order in which a person

may scan through the objects in the scene. (5) and (6) serve to implement the idea that

objects in the real world are situated, with prior knowledge of the object affecting how

they can be described.

8.5. Algorithm Comparison: Is It Fair?

An issue in these evaluations is whether it is fair to compare the algorithms. The Graph-

Based Algorithm and the Incremental Algorithm are deterministic; the proposed Visible

Objects Algorithm is not. Graph and IA were not written for any particular input,

but were built to be more general, while the Visible Objects Algorithm was written

specifically for visual input, and all algorithms are here evaluated in domains of visible



Chapter 8.5 Page 205

objects. Another issue is that the features corresponding to size are not the same across

algorithms. The Visible Objects Algorithm uses height and width features, whereas

Graph and IA require values for an attribute like size to be processed before REG begins

(e.g., with values such as large or small). The properties corresponding to location are

also not the same between algorithms, with the Visible Objects Algorithm requiring

features for location explicitly, while Graph and IA have no constraints on this type

of input and can operate on, e.g., the x-dimension independently of the y-dimension

(an approach suggested by the annotation in the TUNA corpus).

The issue of comparing apples to oranges in the comparison of the deterministic, general

Graph and IA algorithms to the stochastic, vision-specific Visible Objects Algorithm

is a problem of the state of the art. At the time of this writing, there are no other

implemented, non-deterministic REG algorithms. It is therefore informative to see how

the proposed algorithm compares to deterministic algorithms; if it performs as well as

or better than these algorithms, then the proposed algorithm offers a viable alternative

approach to generating descriptions of visible objects, particularly if the goal is generating

human-like reference.

There are few publicly available REG algorithms that are constructed for a specific input

domain, but evaluations of Graph, IA, and variations on these algorithms tend to use

as input a visual domain, frequently the TUNA domain used in this evaluation (Viethen

et al., 2008; van Deemter et al., 2012; Koolen et al., 2012). Therefore, although these

algorithms were not written for any particular domain, in current research they tend to

be used in visual domains: in comparison with this algorithm, I aim to address such an

input head-on.

The input for size differs between the proposed algorithm and the IA/Graph because the

proposed algorithm was constructed for a visual domain. Focusing on size (see Chapter

4), it became clear that a visual input such as an image will not tell you what is large or

what is small – it will only tell you what the height and width of objects are. Because
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I developed mechanisms for size specifically, the proposed algorithm can operate on

object height and width, bearing a more direct connection to the visual domain (such as

is provided from the output of an object recognizer, for example). However, this places

it at a possible disadvantage when evaluated against Graph and IA, as it must not only

decide whether or not to include a size attribute, but also what its semantic value should

be.

I maintain this possible disadvantage with the goal of bringing REG algorithms closer to

a visual input; although my research is limited to using “gold-standard” values for most

attributes, size is one attribute where we can process the visual scene more directly. By

evaluating on the selection of attributes and not on their values, any discrepancies caused

by this difference in values should be minimized.

A similar problem to size arises for location. Because the proposed algorithm is de-

signed to handle visible objects, it requests location features explicitly (e.g., a multi-

dimensional vector marking features for x, y, and z coordinates) and provides no mech-

anism for processing an x-dimension separately from a y-dimension, as suggested by

the annotations in the TUNA domain. Due to this possible discrepancy between algo-

rithms, I do not evaluate the attributes of location, x-dimension or y-dimension in

the TUNA domain.

My hope in comparing against the (quite different) state of the art is to illustrate the

benefit in defining the details of the input domain as clearly as possible when constructing

an algorithm, focusing on modality specifics. By working on a visual modality, comparing

across several different visual corpora, common properties of that modality that are

important to handle become clear, and each can be focused on explicitly.

8.6. Evaluation 1: GRE3D3

8.6.1. The Corpus. In the first evaluation, I use the GRE3D3 corpus (Viethen &

Dale, 2008). It is necessary to add semantic annotations to this corpus in order to use
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01 func main(scene, referent_id):

02 obj = scene[referent_id]
03 r = refer(obj, scene)

04 func refer(obj, scene):

05 r = <>

06 cat = KB.find_category(obj[‘TYPE’])
07 r = analyze_SP(obj, scene, r)
08 r = analyze_CP(obj, scene, r)
09 r = incremental_obj(obj, scene, r)
10 r += <obj[‘TYPE’]>
11 return r

12 func analyze_SP(obj, scene, r):

13 att = ‘COLOR’
14 val = obj[att]
15 r += check_interconn(obj, scene, att, val, r)
16 r += add_lemma(att, val, length(r))
17 for att 2 <‘SIZE’, ‘LOCATION’, ‘ORIENTATION’>:
18 if att == ‘SIZE’:
19 rx = obj[‘WIDTH’], ry = obj[‘HEIGHT’]
20 dx = average width, other scene objects
21 dy = average height, other scene objects
22 val = SizeMod(rx, ry, dx, dy)
23 r += add_lemma(att, val, 0)
24 else:

25 val = obj[att]
26 r += add_lemma(att, val, length(r))
27 return r

28 func check_interconn(obj, s, att, val, r):

29 i = <>
30 for i_att of KB.interconnected(att):
31 ival == obj[att]
33 if KB.implies(att, val, i_att, ival):
34 i += add_lemma(i_att, ival, length(r))
35 return i

36 func analyze_CP(obj, scene, r):

37 for att 2 CP:
39 val = obj[att]
43 r += check_interconn(obj, scene, att, val, r)
44 r += add_lemma(att, val, length(r))
45 return r

46 func incremental_obj(obj, scene, r):

47 for d in scene:
48 dobj = scene[d]
49 if dobj == obj:
50 continue
51 if dobj[‘TYPE’] != obj[‘TYPE’]:
52 continue
53 for att 2 CP [ SP:
54 if att == ‘SIZE’:
55 rx = obj[‘WIDTH’], ry = obj[‘HEIGHT’]
56 dx = dobj[‘WIDTH’], dy = dobj[‘HEIGHT’]
57 val = SizeMod(rx, ry, dx, dy)
58 else:

59 dval = dobj[att]
60 val = obj[att]
61 if dval != val:
62 l = add_lemma(att, val, length(r), dval)
63 if l not in r:
64 r += l
65 return r

66 func add_lemma(att, val, len, dval=None):

67 l = <>
68 if dval:
69 l = val
70 else:

71 if throw_dice(↵
att

, cat.�
val

, len):
72 l = val
73 return l

Figure 4. Algorithm: How it works in GRE3D3 domain. cat.�
val

is the
default value of 1 for all attribute-values, meaning typicality has no effect.

it in the algorithms, and so in collaboration with the first author of GRE3D3 paper, we

make this revised, annotated corpus available online.4 This corpus contains expressions

for 20 simple scenes. The scenes are split into two trial sets (Trial Set 1 and Trial Set 2),

with Trial Set 1 having 30 expressions for each scene and Trial Set 2 having 33 expressions

for each scene. Each participant produced expressions for all 10 scenes in one of the two
4http://m-mitchell.com/corpora/GRE3D3/xml/
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sets. Each scene contains three objects, and in two colors: blue and green or red and

yellow. Each object is either a sphere or a cube, and the object can be either large or

small. Scenes from one trial set are shown in Figure 5. An example of the input to the

algorithms is provided in Figure 2.

Figure 5. Images from GRE3D3 Trial Set 1.

Scenes in this corpus are constructed to systematically vary values for five attributes:

color, size, location, relative location and type. The location attribute picks

out the location of the object in the scene (right-hand or left-hand), and the relative

location attribute picks out the location of the object relative to the other objects (on-

top-of, right-of). For example, an target object (tg) may be annotated as being on-top-of

a landmark object (lm) and right-of the third object (obj3). Table 5 lists the full set of

attributes, with possible values.



Chapter 8.6 Page 209

Attribute Possible Values Example Explanation
color red, yellow, green,

blue
color:red The color of the object is

red.
size small, large size:small The size of the object is

small.
type ball, cube type:ball The object is a ball.
location right-hand,

left-hand
location:right-hand The object is on the right-

hand of the image.
rel_location on-top-of, below,

left-of, right-of
rel_location:lm,on-top-of The object is on top of the

landmark object (lm).

Table 5. GRE3D3 annotation labels and examples.

This corpus is particularly useful for evaluation of REG algorithms because it is well-

controlled and semantically transparent. Because the corpus uses simple computer-

generated geometric figures rather than real world objects, it minimizes issues of object

expectation and typicality inherent in using everyday objects. Further, the objects are

in a “scene” setting, arranged in physically plausible configurations within a room, which

may make the broader context relatively natural. The GRE3D3 corpus is therefore useful

to test the inclusion of type and simple properties (color, size, location), without

concern for complex properties such as shape and material.

Because these are not images of everyday objects, typicality does not play a role, and in

the proposed algorithm all cat.�
val

values are set to 1.0. This means that the stochastic

function reduces to:
p(y ! lemma|d) = ↵

x

⇥ � (8.2)

This corpus therefore aids in applying some of the basic ideas of the Visible Objects

Algorithm: That the selection of color and the selection of size within an identifying

description may be processed separately (the selection of one not influencing the selection

of the other); that these properties are foremost in the generation of reference to visible

objects; that size can first be determined from an overall gist of the scene, represented as

height and width averages; and that natural reference to objects can be created without

ensuring that all distractors are ruled out. The list of hypotheses I aim to address using

this corpus is given below:
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• color and size are selected independently of one another

• inclusion of an attribute in the identifying description is based on:

(1) the description’s length

(2) the prior likelihood of including the attribute

• stochastic inclusion of each attribute aids in generating the distribution of at-

tribute sets observed in human data

8.6.2. Preparing the Algorithms. I randomly select two scenes from Trial Set 1

(scenes 7 and 9) and their mirrored counterparts in Trial Set 2 (scenes 17 and 19) for

development. The remaining eight scenes in each set are used in the evaluation.

As a first attempt at evaluating the algorithms in this domain, I do not evaluate the

algorithms on their selection of relative location (e.g., on-top-of) and descriptions

of related objects (e.g., “on top of the big red ball”). Creating language for such spatial

properties and their related objects requires significantly extending the capabilities of

the Visible Objects Algorithm as well as the Incremental Algorithm (Kelleher & Kruijff,

2006). relative location is therefore made available for all algorithms to select; but

I exclude this property in the evaluation.

The sections of the Visible Objects Algorithm that are run in this evaluation are as shown

in Figure 4. Portions of the algorithm that have no effect in this domain are colored in

grey. Using the GRE3D3 development data, I find an optimal operating point with the

weight for the length of the description, g, set to 5 (line 78, throw_dice function).

8.6.3. 1: Evaluation by Alignment (MaxAlign). In the first evaluation, I use

eight-fold-cross-validation. In each fold, I use the seven training scenes to estimate:

• ↵ values for attributes in the Visible Objects Algorithm.

• A preference order for attributes in the Incremental Algorithm, based on fre-

quency (most frequent attribute first, type placed either first or last and values

for both versions reported).
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• Relative frequencies of attribute-value pairs, which are then clustered to deter-

mine costs for the Graph-Based Algorithm, as discussed in Section 8.4.2.

I use the the algorithms to generate 30 attribute sets for Trial Set 1 and 33 attribute

sets for Trial Set 2, corresponding to the number of expressions in each set. Because the

proposed algorithm is non-deterministic, I run the algorithm five times in each fold and

calculate the average MaxAlign.

GRE3D3
Algorithm Trial Set 1 Trial Set 2
Proposed Algorithm 88.23% 90.06%
IA - Type Last 87.71% 85.13%
IA - Type First 85.42% 84.19%
Graph 87.71% 88.73%

Table 6. Average Maximum Alignment (Accuracy) on GRE3D3 corpus.

Results are shown in Table 6. The proposed Visible Objects Algorithm achieves higher

accuracy than either version of the Incremental Algorithm or the Graph-Based Algorithm.

This suggests that the algorithm is competitive with the state of the art at producing

human-like expressions for a referent. However, the algorithm may achieve a higher score

because it is stochastic; there are a greater number of possible alignments to find the

maximum alignment score. In the next evaluation I address this issue, comparing how

well the Visible Objects Algorithm’s most likely predicted attribute set compares with

the IA and Graph’s predicted attribute set.

8.6.4. 2: Evaluation of Majority (Maj). As before, I use the eight scenes in

eight-fold cross-validation, estimating parameters on the seven training scenes in each

fold. For each test scene, I run the proposed algorithm 1,000 times. The attribute

sets predicted by each algorithm are ordered by how frequently they are predicted, and

the most frequent attribute set is compared against the most frequent human-produced

attribute set that contains the attributes under consideration. The majority score is the
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percentage of folds where the most frequent attribute sets match. Results are shown in

Table 7.

GRE3D3
Algorithm Trial Set 1 Trial Set 2
Proposed Algorithm 75.00% 50.00%
IA - Type Last 62.50% 25.00%
IA - Type First 37.50% 37.50%
Graph 62.50% 50.00%

Table 7. Percentage of scenes where most frequently predicted expression
matches most frequently observed expression.

The Graph-Based and the Visible Objects Algorithm both predict the majority attribute

set in this evaluation at least 50% of the time, and reflect complementary strengths:

While the Graph-Based Algorithm predicts only one attribute set, it tends to be the

majority type. The Visible Objects Algorithm proposes many attribute sets, and most

frequently predicts the majority attribute set.

8.6.5. 3: Frequency Prediction (FreqPred). In this part of the evaluation, we

look only at the proposed algorithm and examine how the predicted attribute sets reflect

the frequency of observed attribute sets. Because there is quite a bit of variation for

each fold (some observed attribute sets are never predicted), I provide examples of the

attribute sets for the scene with the highest probability and the attribute sets for one of

the scenes with the lowest probability. Attribute set frequencies are shown in Tables 8

and 9.

Examining the differences between the predicted corpus and the observed corpus, we see

some areas for improvement in the proposed algorithm. One clear area for future work

is further expanding the kinds of location language it can produce, in particular for this

corpus, generating attribute sets with relative location as well as location.

We also see an effect of the annotations. For example, the third row in Table 8 shows

that location (corresponding to on the left) is not annotated as a property of the target
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Predicted Freq. Observed Freq. Example Observed Human
Expressions

tg:colour:yellow
tg:type:ball

796 79.60% tg:colour:yellow
tg:type:ball

8 24.24% yellow ball, yellow sphere

tg:type:ball 196 19.6% tg:type:ball 7 21.21% ball, sphere

tg:location:left
tg:type:ball

4 0.40%

tg:colour:yellow
tg:location:left
tg:type:ball

4 0.40%

tg:colour:yellow
tg:rel_location:
lm,on-top-of
tg:type:ball

12 36.36% yellow ball on top of the red cube

on the left

tg:rel_location:
lm,on-top-of
tg:type:ball

6 18.18% ball on top of the box

Table 8. GRE3D3 Scene 11, best FreqPred match.
p(x|d, n) = 0.011525. Matching attribute sets shown in red.

referent. There is syntactic ambiguity as to where the prepositional phrase attaches; the

property location:left may very well apply to both the target (tg) and the landmark

(lm), but in these types of cases in the GRE3D3 corpus, location is marked as a

property of the landmark alone. A prediction that includes location for a target referent

will therefore not match, even though the participant may have intended this property

to apply to the target referent. Further work may look into addressing these annotation

issues.

It is clear from this that the distributions predicted by the algorithm are not close to the

observed distributions. The algorithm predicts attribute sets that are not seen and does

not predict attribute sets that are seen. I expect that any random selection of people will

not produce all the attribute sets that the algorithm predicts; however, I would hope that
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Predicted Freq. Observed Freq. Example Observed Human
Expressions

tg:colour:green
tg:type:ball

827 82.70% tg:colour:green
tg:type:ball

9 30.00% green ball

tg:type:ball 156 15.60% tg:type:ball 4 13.34% ball

tg:location:right
tg:type:ball

13 1.30%

tg:colour:green
tg:location:right
tg:type:ball

4 0.40%

tg:rel_location:
lm,on-top-of
tg:type:ball

7 23.34% ball on top of the cube on the right

tg:colour:green
tg:rel_location:
lm,on-top-of
tg:type:ball

6 20.00% green ball that is on top of the blue

cube on the right

tg:colour:green
tg:size:small
tg:type:ball

2 6.67% small green ball

tg:colour:green
tg:rel_location:
lm,on-top-of
tg:size:small
tg:type:ball

1 3.34% small green ball on top of the blue

cube on the right

tg:rel_location:
lm,on-top-of
tg:size:small
tg:type:ball

1 3.34% little ball on top of the cube on the

right

Table 9. GRE3D3 Scene 1, one of the worst FreqPred matches.
p(x|d, n) = 0.00. Matching attribute sets shown in red.

all attribute sets produced by people are at least predicted by the algorithm. But that

is not the case. As can be seen in Table 9, fifth row, the set that includes color, size

and type – all individually attributes that the algorithm predicts – is not predicted.

To address this issue, I must further examine why the proposed algorithm does not

include some of the attributes that people do include. A common mistake made by the
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algorithm is that it does not predict size when the target object is the only one of its

type in the scene. size is created in analyze_SP by a comparison with the overall “gist”

of the scene, represented as height and width averages of other items of the same type.

However, it makes some sense that this overall “gist” should not pay such close attention

to type. This may also be different for different people, and in some cases the set of

comparator objects used to determine the target object’s type may include objects that

are similar in some way other than basic type – for example, the fact that these are all

basic geometric objects (same superordinate category) may make them similar enough

to compare for size. Future work may evaluate versions of this algorithm that varies the

comparison set used to determine the target object’s size in analyze_SP.

8.7. Evaluation 2: TUNA

8.7.1. The Corpus. I next evaluate on the TUNA corpus furniture domain, which

contains 7 sets of furniture items each with expressions elicited from 60 subjects. The

sets are used in two conditions, with 30 subjects encouraged to use location (+LOC

condition), and 30 subjects discouraged to use location (-LOC condition). 3 of the

original 60 subjects needed to be removed from the corpus due to technical issues in their

data, leaving 28 subjects in the +LOC condition and 29 in the -LOC condition.

This corpus is similar to the GRE3D3 corpus, with participant stimuli containing simple

objects in basic colors, including variation of color and size values. This corpus also

varies objects’ orientation, and I add this attribute to the evaluation. relative

location and properties of the relatum are also less of an issue in this corpus, as

expressions containing these properties make up only small section of the data (4.1% of

the +LOC condition and 2.0% of the -LOC condition).

On the other hand, there are more complications for handling location in this corpus:

In the GRE3D3 corpus, locations were kept constant for each of the scenes. In the

TUNA corpus, there is no location constancy; subjects presented with the same ‘scene’
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01 func main(scene, referent_id):

02 obj = scene[referent_id]
03 r = refer(obj, scene)

04 func refer(obj, scene):

05 r = <>

06 cat = KB.find_category(obj[‘TYPE’])
07 r = analyze_SP(obj, scene, r)
08 r = analyze_CP(obj, scene, r)
09 r = incremental_obj(obj, scene, r)
10 r += <obj[‘TYPE’]>
11 return r

12 func analyze_SP(obj, scene, r):

13 att = ‘COLOR’
14 val = obj[att]
15 r += check_interconn(obj, scene, att, val, r)
16 r += add_lemma(att, val, length(r))
17 for att 2 <‘SIZE’, ‘LOCATION’, ‘ORIENTATION’>:
18 if att == ‘SIZE’:
19 rx = obj[‘WIDTH’], ry = obj[‘HEIGHT’]
20 dx = average width, other scene objects
21 dy = average height, other scene objects
22 val = SizeMod(rx, ry, dx, dy)
23 r += add_lemma(att, val, 0)
24 else:

25 val = obj[att]
26 r += add_lemma(att, val, length(r))
27 return r

28 func check_interconn(obj, s, att, val, r):

29 i = <>
30 for i_att of KB.interconnected(att):
31 ival == obj[att]
33 if KB.implies(att, val, i_att, ival):
34 i += add_lemma(i_att, ival, length(r))
35 return i

36 func analyze_CP(obj, scene, r):

37 for att 2 CP:
39 val = obj[att]
43 r += check_interconn(obj, scene, att, val, r)
44 r += add_lemma(att, val, length(r))
45 return r

46 func incremental_obj(obj, scene, r):

47 for d in scene:
48 dobj = scene[d]
49 if dobj == obj:
50 continue
51 if dobj[‘TYPE’] != obj[‘TYPE’]:
52 continue
53 for att 2 CP [ SP:
54 if att == ‘SIZE’:
55 rx = obj[‘WIDTH’], ry = obj[‘HEIGHT’]
56 dx = dobj[‘WIDTH’], dy = dobj[‘HEIGHT’]
57 val = SizeMod(rx, ry, dx, dy)
58 else:

59 dval = dobj[att]
60 val = obj[att]
61 if dval != val:
62 l = add_lemma(att, val, length(r), dval)
63 if l not in r:
64 r += l
65 return r

66 func add_lemma(att, val, len, dval=None):

67 l = <>
68 if dval:
69 l = val
70 else:

71 if throw_dice(↵
att

, cat.�
val

, len):
72 l = val
73 return l

Figure 6. Algorithm: How it works in TUNA domain. Lines that have
no effect are in grey. In contrast to GRE3D3, Orientation is used, and
there are different typicality values for colors of the objects (cat.�

val

).

would see different spatial configurations (I will use the term TUNA ‘scene’ to refer to

a specific collection of objects, without a specific spatial configuration), which makes it

impossible to ascertain what human variation is for a specific arrangement of objects.

Subjects were also split into different conditions, and in the -LOC they were made aware

of the location property (discouraged from using it) (van Deemter et al., 2012), which



Chapter 8.7 Page 217

may prime participant responses. Location is also represented as two separate attributes,

x-dimension and y-dimension, and participant responses may be annotated such that

just x-dimension or just y-dimension appears in the attribute set for an observed

expression – this complicates the training of Graph and comparison with the Visible

Objects Algorithm, which instead processes a location attribute specifically (e.g., x

and y coordinates are both treated as location features). These last two issues are

discussed in further detail below.

The primary reason why I use this corpus is that the objects in TUNA are more complex

than the geometric objects of the GRE3D3 domain (see Figure 1). The TUNA images are

computer-generated images of furniture, and so the algorithms may perform differently,

or reference may behave differently; for example, because furniture is a real world object,

issues of typicality may come into play. I therefore move to the TUNA domain to test

some of same aspects of the algorithms tested in GRE3D3 – color and size of computer-

generated objects – but remove the location attribute, minimize the effect of relative

location and descriptions of the relatum, and add typicality for the proposed algorithm,

represented as likelihood values in the variable cat.�
val

(line 71). This gives us a nice

sense of the variation in the algorithms across somewhat similar corpora.

The list of hypotheses I aim to address using this corpus is given below. From the

GRE3D3 hypotheses listed in Section 8.6, the TUNA corpus adds evaluation for (3), the

typicality of the attribute’s value for the object.

• color and size are selected independently of one another

• inclusion of an attribute in the identifying description is based on:

(1) the description’s length

(2) the prior likelihood of including the attribute

(3) the typicality of the attribute’s value for the object

• stochastic inclusion of each attribute aids in generating the distribution of ex-

pressions observed in human data
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Incremental and Graph-Based Algorithm TUNA Scene Input:

Object1 colour:grey size:large type:desk x-dimension:3 y-dimension:1 orientation:front
Object2 colour:blue size:large type:desk x-dimension:2 y-dimension:1 orientation:front
Object3 colour:red size:large type:desk x-dimension:3 y-dimension:2 orientation:back
Object4 colour:green size:small type:desk x-dimension:4 y-dimension:1 orientation:left
Object5 colour:blue size:large type:fan x-dimension:1 y-dimension:1 orientation:front
Object6 colour:red size:large type:fan x-dimension:5 y-dimension:1 orientation:back
Object7 colour:green size:small type:fan x-dimension:2 y-dimension:2 orientation:left

Simplified Visible Objects Algorithm TUNA Scene Input:

Object1 colour:grey size:(454,454) type:desk location:(3,1) orientation:front
Object2 colour:blue size:(454,454) type:desk location:(2,1) orientation:front
Object3 colour:red size:(454,454) type:desk location:(3,2) orientation:back
Object4 colour:green size:(254,254) type:desk location:(4,1) orientation:left
Object5 colour:blue size:(454,454) type:fan location:(1,1) orientation:front
Object6 colour:red size:(454,454) type:fan location:(5,1) orientation:back
Object7 colour:green size:(254,254) type:fan location:(2,2) orientation:left

Figure 7. Example input to the algorithms: TUNA Scene 2.

8.7.2. Preparing the Algorithms. The TUNA objects may be perceived by a

speaker to have a typical color, as well as typical values for the attributes that require

comparison processes: typical size within a room, location within a room, and ori-

entation within a room. On the other hand, because the scenes do not offer a room

context but are instead cut-out images against a white background, the properties that

require comparison properties may not to be clearly affected by typicality expectations

(or may all be seen as atypical).

Typicality may come into play more clearly for color. It may not – furniture items have

been identified specifically as low color diagnostic objects (Tanaka & Presnell, 1999);

color does not strongly influence their recognition, and people tend not to list typical

colors when generating property lists for furniture. Further, the visual salience of object

color due to its contrast against the white background will be quite high, and this is a

conflating factor. To more clearly examine the effect of color typicality in the Visible
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Objects Algorithm, I therefore compare two versions of the algorithm. One version uses

likelihood estimates for typical color values, and one does not.

The annotation of location in the TUNA corpus also poses a problem for algorithm train-

ing, particularly for Graph, as discussed above. In TUNA, location is represented as two

attributes, x-dimension and y-dimension, and participant responses may be marked

such that just x-dimension or just y-dimension is annotated in an observed expression.

Applying this in a straightforward way to the training stage of Graph, this means that

each x-dimension is weighted separately from each y-dimension, and we immediately run

into data sparsity issues for determining costs for these properties.

This also requires that the x-dimension of a scene be selected separately from the y-

dimension during reference, and places the proposed algorithm – which explicitly re-

quests that both coordinates be analyzed simultaneously as location – at a possible

advantage.5 Due to these issues, I remove location and the related attributes of x-

dimension and y-dimension from the evaluation. Although all algorithms have access

to these attributes and may use them in their decision processes, the algorithms are not

evaluated on their selection of these attributes.

For development on this corpus, I randomly select 2 scenes (scenes 1 and 2). I find that

including type at the start or end of the Incremental Algorithm’s preference order has

no effect on its accuracy, and that setting different values in the proposed algorithm for

g above 5 in the throw_dice function (line 75) appears to have little effect.

To set typicality values for the Visible Objects Algorithm in this domain, we need a

database that provides information about how likely it is for, e.g., a chair to be red.

In Chapter 5, I used McRae’s norms to determine the frequency with which a property

is mentioned for an object, and ideally these frequencies may be used as a measure of

5Note that the level of abstraction for location represented as (x,y) axes is similar to the level of
abstraction for size represented as (height,width) lengths. My view is that location, like size, should
be treated as a multidimensional vector defining various distances between the object’s top/bottom/sides
and the rest of the scene, and the problem is therefore to return the best location type given the vector
space.
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sofa colour:red :0.1 colour:orange:0.0333 colour:yellow:0.0333
colour:green:0.1000 colour:blue :0.0667 colour:purple:0.0
colour:pink :0.0333 colour:black :0.1000 colour:brown:0.0333
colour:grey :0.0667 colour:white :0.4333

fan colour:red :0.0333 colour:orange:0.0 colour:yellow:0.0
colour:green:0.0 colour:blue :0.0667 colour:purple:0.0
colour:pink :0.0 colour:black :0.2667 colour:brown:0.0667
colour:grey :0.4333 colour:white :0.1333

desk colour:red :0.0 colour:orange:0.0 colour:yellow:0.0
colour:green:0.0 colour:blue :0.0 colour:purple:0.0
colour:pink :0.0 colour:black :0.1 colour:brown:0.7
colour:grey :0.0667 colour:white :0.1333

chair colour:red :0.3 colour:orange:0.0333 colour:yellow:0.0
colour:green:0.0 colour:blue :0.0667 colour:purple:0.0333
colour:pink :0.0 colour:black :0.1667 colour:brown:0.3
colour:grey :0.0 colour:white :0.1

Table 10. Typicality values for color attributes of objects in TUNA
domain. Numbers correspond to the relative frequency out of the top 30
images in a Google image search for the object.

the typicality of the property; however, likely owing to the fact that these are low color

diagnostic objects (Tanaka & Presnell, 1999), people did not list typical colors for any

of the TUNA furniture objects. Therefore, I establish typical colors for the objects by

performing a Google image search for each object, and calculating the relative color

frequencies in the first 30 image results. These values are shown in Table 10.

The Visible Objects Algorithm tested in this domain can be represented in the simplified

form shown in Figure 6. Portions of the algorithm that have no effect are colored in grey.

8.7.3. 1: Evaluation by Alignment (MaxAlign). I again use five-fold cross-

validation on the five test scenes, setting ↵ values for the proposed algorithm, the PO for

the Incremental Algorithm, and the costs for Graph from the training data in each fold.

For each test scene, I again run the proposed algorithm five times, taking the average

maximum alignment score over all five runs.
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TUNA
Algorithm +LOC -LOC
Proposed Algorithm - Typicality 87.54% 84.79%
Proposed Algorithm - No Typicality 88.11% 85.35%
IA 80.00% 79.14%
Graph 68.57% 66.38%

Table 11. Average Maximum Alignment (Accuracy) on TUNA corpus.

Results are shown in Table 11. Again we see that the proposed Visible Objects Algorithm

outperforms the IA and Graph. Interestingly, the version of the algorithm that does not

use typicality likelihoods performs better than the version that does. This may be because

the method for determining typicality likelihood is not a good method; this may also be

because typicality does not play a significant role in reference to visible objects, which

is also in line with the findings for material in Chapter 5. It is also possible that the

TUNA domain is not natural enough for issues of typicality to come into play. Such an

option is addressed in the next evaluation, where I use the Typicality corpus of real world

objects. We may also be able to approximate typicality in a better way; here I am trying

just one method, estimating typicality using maximum likelihood estimation on Google

search images.

Graph performs remarkably poorly, and this may be due to the data sparsity issue that

arises when requiring the algorithm to train on attribute-values. Following previous

work (Theune et al., 2011; Koolen et al., 2012, see Section 8.4.2), weights are based on

the frequency of previously seen attribute-value pairs, as opposed to attributes alone.

In development, I find that some attribute-value pairs receive the higher weight and

are placed further down in the preference order because they are not seen, or are seen

infrequently; testing on a new (unseen) scene, an attribute-value rare in training becomes

significant in the test, and Graph’s preference not to include it significantly hurts its

accuracy.6

6Note it is also possible to use a graph-based approach where attributes alone form the weights;
along with the preference order put in place in Viethen et al. (Viethen et al., 2008), this essentially
becomes a graph-based implementation of the Incremental Algorithm.
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8.7.4. 2: Evaluation of Majority (Maj). As in the GRE3D3 corpus, I use the

TUNA scenes in five-fold cross-validation, estimating parameters on the four training

scenes in each fold, and for each test scene, I run the proposed algorithm 1,000 times.

I report the percentage of folds where the majority attribute set between the observed

and predicted data match. Results are shown in Table 12.

TUNA
Algorithm +LOC -LOC
Proposed Algorithm - Typicality 40.00% 40.00%
Proposed Algorithm - No Typicality 40.00% 40.00%
IA 0.00% 100.00%
Graph 20.00% 20.00%

Table 12. Percentage of scenes where most frequently predicted expres-
sion matches most frequently observed expression.

The Visible Objects Algorithm is relatively stable across conditions, predicting the ma-

jority attribute set in 40% of the test scenes. It does not outperform the IA in the -LOC

condition, but the IA has a large range across the two conditions (0% and 100%).

8.7.5. 3: Frequency Prediction (FreqPred). In this domain, we again see that

the distribution modeled by the Visible Objects Algorithm does not match the human

corpus very well. The algorithm does not predict all of the seen attribute sets in any

scene; all probabilities are therefore 0.0. I report values from a randomly selected scene as

an example of the difference in distribution modeled by the algorithm and the frequencies

of human-produced attribute sets in Tables 13 and 14.

Examining the mistakes made by the algorithm in this corpus, we see that the algorithm

does not often predict any attribute without also predicting color. This makes the

algorithm incapable of predicting expressions that do not include color (but include

other attributes); for example, the algorithm does not predict the attribute set from the

6th row of Table 14, tg:orientation:front, tg:type:desk. This is one area where visual salience

may play a role, which I have left unimplemented in this evaluation and leave for future
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Predicted Freq. Observed Freq. Ex. Human Expression
tg:colour:green
tg:size:small
tg:type:desk

406 40.60% tg:colour:green
tg:size:small
tg:type:desk

3 10.35% green, smaller desk

tg:colour:green
tg:type:desk

231 23.10% tg:colour:green
tg:type:desk

3 10.35% green desk

tg:colour:green
tg:orientation:front
tg:type:desk

82 8.20% tg:colour:green
tg:orientation:front
tg:type:desk

2 6.90% a green desk facing forwards

tg:colour:green
tg:orientation:front
tg:size:small
tg:type:desk

81 8.10% tg:colour:green
tg:orientation:front
tg:size:small
tg:type:desk

10 34.48% small green desk facing forward

tg:colour:green
tg:location:(2,1)
tg:type:desk

91 9.10%

tg:colour:green
tg:location:(2,1)
tg:size:small
tg:type:desk

79 7.90%

tg:colour:green
tg:location:(2,1)
tg:orientation:front
tg:type:desk

22 2.20%

tg:colour:green
tg:location:(2,1)
tg:orientation:front
tg:size:small
tg:type:desk

8 0.80% (More observed expressions in continued table below)

Continued in Table 14 . . .

Table 13. TUNA Scene 6, FreqPred match.
p(x|d, n) = 0.0. Matching attribute sets shown in red.

work. Experimenting with different stochastic functions may also bring the algorithm’s

output closer to a reasonable distribution.

8.8. Evaluation 3: Typicality Corpus

8.8.1. The Corpus. In these evaluations, I examine how well the algorithms fare

in a corpus of real world objects, using the objects tested in Chapter 5 (bowls, boxes,

envelopes, keys, mugs, rulers, and screws). This brings in further complex properties –

texture, material, shape – as well as a real world setting and an overarching goal for

the participant; subjects were not instructed explicitly to refer, but instead instructed to

give directions to another person on how to re-create each arrangement of objects. This



Chapter 8.8 Page 224

. . . continued from Table 13.

tg:colour:green
tg:type:desk
tg:x-dimension:4
tg:y-dimension:3

1 3.45% green desk left of the desk

tg:colour:green
tg:orientation:front
tg:type:desk
tg:x-dimension:3

1 3.45% middle frontal green table

tg:colour:green
tg:type:desk
tg:y-dimension:1

1 3.45% top green desk

tg:colour:green
tg:size:small
tg:type:desk
tg:y-dimension:1

1 3.45% smallest green desk on the top

row

tg:type:other
tg:x-dimension:4
tg:y-dimension:3

1 3.45% third picture on third row

tg:orientation:front
tg:type:desk

1 3.45% a desk with the cupboards facing

me

tg:type:desk
tg:x-dimension:4
tg:y-dimension:3

1 3.45% 3rd desk last row

tg:colour:green
tg:size:small
tg:type:desk
tg:x-dimension:5
tg:y-dimension:2

1 3.45% little green table center right

tg:colour:green
tg:type:desk
tg:y-dimension:3

1 3.45% the green desk in the bottom row

is in red box

tg:colour:green
tg:orientation:front
tg:type:desk
tg:y-dimension:3

1 3.45% the green desk facing me in the

bottom row

tg:x-dimension:5
tg:y-dimension:1

1 3.45% top right

Table 14. TUNA Scene 6, FreqPred match.
p(x|d, n) = 0.0. Matching attribute sets shown in red. (Continued from
Table 13.)

lessens experimental effects caused by participants knowing the purpose of the study.

I hope that expressions collected in this domain are more clearly affected by typicality

expectations, since the objects are real objects in real scenes (see Figure 8). Examples of

the input for all algorithms are given in Figure 9. The list of hypotheses I aim to address

using this corpus is given below:
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Figure 8. Items from typicality study.

Incremental and Graph-Based Algorithm Input:

Object1 colour:brown size:medium shape:flower opacity:3
sheen:2 material:ceramic form:smooth type:bowl
location:bottom orientation:rightside-up texture:spiky

Object2 colour:brown size:medium shape:round opacity:3
sheen:3 material:cloth form:hairy type:bowl
location:bottom orientation:rightside-up texture:coarse

Simplified Visible Objects Algorithm Input:

Object1 colour:brown size:(10,20) shape:flower opacity:3
sheen:2 material:ceramic form:smooth type:bowl
location:bottom orientation:rightside-up texture:spiky

Object2 colour:brown size:(10,20) shape:round opacity:3
sheen:3 material:cloth form:hairy type:bowl
location:bottom orientation:rightside-up texture:coarse

Figure 9. Example input to the algorithms: Typicality.

• color and size are selected independently of one another

• a given attribute value can bring in interconnected attributes that should be

considered before progressing – specifically tested for the attribute of color

and the interconnected attribute material.

• inclusion of an attribute in the identifying description is based on:
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(1) the description’s length

(2) the prior likelihood of including the attribute

(3) the typicality of the attribute’s value for the object

• stochastic inclusion of each attribute aids in generating the distribution of ex-

pressions observed in human data

8.8.2. Preparing the Algorithms. For an input scene, I define properties of the

target referent and the object of the same type that appears next to it. Values for

opacity and sheen are written on a scale of 1 to 3, with 3 being completely opaque-

/completely shiny. Further work will need to refine these representations and develop

guidelines for mapping real world objects to attribute-value representations. The current

annotation is a first-pass for now to understand how the algorithms perform in a real

world domain.

8.8.3. 1: Evaluation by Alignment (MaxAlign). As in the TUNA domain, the

Incremental Algorithm performs identically with type placed at the beginning or at the

end of the PO, and so I report one set of values. All lines of the Visible Objects Algorithm

written in Figure 3 play a role in this domain. In contrast to the previous domains,

complex properties (shape, material, etc.) are used in generating the attribute set,

and interconnected properties (material for color) are analyzed by the Visible Objects

Algorithm.

I do not use a development set to tune the weight on description length (g) in the

algorithm, but use the value established for GRE3D3 and TUNA (5). Again, evaluation

is performed using cross-validation, with the proposed algorithm averaged over five runs

for each test scene.

Results are shown in Table 15. We again see that the algorithm outperforms the IA

and Graph, and, interestingly, again see that including typicality likelihoods does not

greatly increase algorithm accuracy. As can be seen in the case of material, typicality

as implemented lowers the algorithm’s accuracy. This suggests that there may be a better
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Typicality
Algorithm Atypical Atypical

Shape Material
Proposed Algorithm - Typicality 87.93% 84.32%
Proposed Algorithm - No Typicality 87.11% 85.10%
IA 83.67% 75.34%
Graph 75.17% 73.30%

Table 15. Average Maximum Alignment (Accuracy) on Typicality Corpus.

method for determining typicality, and/or a better method for implementing the affect

of typicality in a stochastic algorithm. For now, disregarding property typicality results

in an algorithm that produces a better match with human data for visible objects than

the IA and Graph.

8.8.4. 2: Evaluation of Majority (Maj). As before, I use the seven test items in

each condition (Atypical Shape or Atypical Material) in seven-fold cross-validation,

estimating parameters on the six training scenes in each fold, and for each test scene, I run

the proposed algorithm 1,000 times. I report the percentage of folds where the majority

attribute set between the observed and predicted data match. Results are shown in Table

16.

Typicality
Algorithm Atypical Atypical

Shape Material
Proposed Algorithm - Typicality 28.57% 14.29%
Proposed Algorithm - No Typicality 42.86% 14.29%
IA 28.57% 0.00%
Graph 0.00% 0.00%

Table 16. Percentage of scenes where most frequently predicted expres-
sion matches most frequently observed expression.

The algorithm outperforms the other algorithms, and we again see that the typicality

function does not help the algorithm better match human data – as seen in the Atypical

Shape condition, the algorithm performs best without typicality.
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8.8.5. 3: Frequency Prediction (FreqPred). In this domain, the algorithm does

not predict all of the seen attribute sets in the Atypical Material condition (all proba-

bilities are 0.0), although it does predict some complete attribute sets for folds (scenes)

from the Atypical Shape condition. I report values from the best-scoring fold in the

Atypical Shape condition and the corresponding scene in the Atypical Material con-

dition to illustrate the difference in distribution between the algorithm’s model and the

human-produced attribute sets. These are shown in Tables 17 and 18.

Predicted Freq. Observed Freq. Example Observed
Human Expressions

tg:shape:octagonal
tg:type:mug

308 30.80% tg:shape:octagonal
tg:type:mug

1 8.34% the mug with. . . that is

not round at the top, it’s

a hexagon

tg:material:ceramic
tg:shape:octagonal
tg:type:mug

306 30.60% tg:material:ceramic
tg:shape:octagonal
tg:type:mug

10 83.34% metal cup. . . the angled

hexagonal or octagonal

tg:colour:silver
tg:type:mug

112 11.20%

tg:colour:silver
tg:material:ceramic
tg:type:mug

100 10.00%

tg:colour:silver
tg:material:ceramic
tg:shape:octagonal
tg:type:mug

73 7.30%

tg:colour:silver
tg:shape:octagonal
tg:type:mug

69 6.90% tg:colour:silver
tg:shape:octagonal
tg:type:mug

1 8.34% the hexagonal silver cup

tg:type:mug 16 0.16%
tg:material:ceramic
tg:type:mug

16 0.16%

Table 17. Mug, Atypical Shape condition, FreqPred match.
p(x|d, n) = 2.0192e-05. Matching attribute sets shown in red.

Qualitatively examining the results, we see that in this domain, the algorithm predicts

color much more often than it is produced by people. It also tends to predict material

more often than people produce it, and shape less often than people produce it. In

the human-produced data, the two attributes are often both found in the attribute set,

leading to overspecified phrases; however, for the two objects of the same type, the

inclusion of one attribute (shape or material) annuls the inclusion of the other for
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Predicted Freq. Observed Freq. Example Observed
Human Expressions

tg:material:metal
tg:type:mug

640 64.00% tg:material:metal
tg:type:mug

2 16.67% a tin cup

tg:material:metal
tg:shape:round
tg:type:mug

271 27.10% tg:material:metal
tg:shape:round
tg:type:mug

8 66.67% the round tin cup

tg:colour:silver
tg:material:metal
tg:type:mug

67 6.70%

tg:colour:silver
tg:material:metal
tg:shape:round
tg:type:mug

22 2.20%

tg:location:bottom
tg:shape:round
tg:type:mug

1 8.34% the circular um drinking

cup here

tg:colour:silver
tg:shape:round
tg:type:mug

1 8.34% the silver round cup

Table 18. Mug, Atypical Material condition, FreqPred match.
p(x|d, n) = 0.0. Matching attribute sets shown in red.

unique identification. Perhaps complex properties such as material and shape are

processed in parallel, not incrementally, which would be one way to account for the

observed overspecification.

As before, we see that the distribution modeled from the algorithm is not likely to

produce the observed human corpus, and unfortunately, fails to predict some attribute

sets produced by people. Experimenting with different stochastic functions may bring

the algorithm’s output closer to a reasonable distribution.

8.9. Discussion

I have evaluated several aspects of the Visible Objects Algorithm:

• color and size are selected independently of one another

• a given attribute value can bring in interconnected attributes that should be

considered before progressing – specifically tested for the attribute of color

and the interconnected attribute material.
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• inclusion of an attribute in the identifying description is based on:

(1) the description’s length

(2) the prior likelihood of including the attribute

(3) the typicality of the attribute’s value for the object

• stochastic inclusion of each attribute aids in generating the distribution of ex-

pressions observed in human data

We have found evidence to suggest that the proposed algorithm performs as well as or

better than the state of the art for generating human-like descriptions of visible objects,

using the given implementations. It achieves a good alignment to the observed human

data, reaching accuracy of 85.00% or higher across corpora, and predicts the most fre-

quently observed attribute set from the human data more consistently than either the

implementation of the Incremental Algorithm or the implementation of the Graph-Based

Algorithm. It reaches majority agreement of 50% and higher in the GRE3D3 corpus,

around 40% in the TUNA corpus and the Atypical Shape condition of the Typicality

corpus, and around 14% in the Atypical Material condition of the Typicality corpus

(compared to the IA and Graph’s 0% on this corpus).

The evaluated versions of the IA and Graph, which assume a literary model of refer-

ence (attempting to uniquely identify the referent by ruling out all competitor objects;

see Chapter 2), lag the proposed algorithm across trials on GRE3D3 and TUNA. The

exception is the IA, evaluated on the TUNA domain, using Majority agreement: In the

+LOC condition, the IA predicts 0% of the observed majority expressions, while in the

-LOC condition, the IA predicts 100% of the observed majority expressions. Here, the

proposed algorithm predicts 40% for -LOC and for +LOC. Although it does not do as

well as the IA in the -LOC condition, it is more stable across both.

The relatively strong performance of the proposed algorithm is especially interesting be-

cause these corpora were created in different modalities. In the GRE3D3 corpus and

the TUNA corpus, speakers typed their answers, and there was no hearer present. In
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the Typicality corpus, reference was made verbally, and a hearer was present. It is

interesting that the approach taken by the proposed algorithm, which assumes a ver-

bal/conversational modality and generates descriptive reference, performs better across

all three domains. This suggests that people may be using a verbal model when they

identify visual referents. This appears to be true even when there is no hearer present,

and even when participants are typing.

However, it is clear that there is more work to be done. We have not come close to

predicting the frequencies of expressions produced by people. This may be forgiven if

people are so varied that any random set of people will have an unpredictable distribution

of attribute sets; however, the algorithm does not even successfully predict all types of

attribute sets in the furniture domain of the TUNA corpus or the Atypical Material

condition of the Typicality corpus. One aspect of the algorithm that should clearly be

varied, and may help improve the distribution predicted by the algorithm, is the sto-

chastic throw_dice function. I have tried one function that takes into account typicality,

description length, and prior attribute likelihood; there are clearly more ways than one

to combine these factors in a stochastic function, and this should be further explored.

A related issue is that I have not implemented parallelism. In Chapter 7 I suggested

two parallel pathways, interacting as the selection of properties in one path affects the

length penalty in the other. Here, I have here taken a serial approach, with the sim-

plification that color and size are selected independently. With richer corpora, and

timing of expressions, we may be able to further understand whether parallel processing

is a reasonable approach for REG.

I have also not connected this algorithm directly to a visual system output, using “gold-

standard” attribute values for all properties except for size. Analysis of the errors for

size suggests that further work should look into how to define the comparison set from

which the size’s semantic form is derived.
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Other areas for future work include the implementation of typicality and interconnected

properties. I have only looked at typicality values for color, and have not seen im-

provement in the algorithm’s accuracy. There may be a better method for determining

typicality, and/or a better method for implementing the affect of typicality in a stochas-

tic algorithm. I have limited the examination of interconnected properties to color

and material, and clearly evaluation of interconnected properties should be further ex-

panded before any conclusions can be made about the utility of this kind of functionality.

From the previous evaluations, we have seen that analyzing color and size indepen-

dently while stochastically adding attributes based on description length and prior like-

lihood (rather than discriminatory power) may lead to more naturalistic output for ref-

erence to visible objects. Generating initial reference that is descriptive, using properties

based on prior likelihoods and focused primarily on generating what is salient for our

visual processing system, leads to a better match with human data. This suggests that

people may be characterized as generating identifying descriptions rather than distin-

guishing descriptions when introducing a visual referent into discourse. There is still a

lot of work to do to bring the distribution predicted by the algorithm closer to the dis-

tribution of observed expressions; but in contrast to earlier work, we can actually begin

to capture speaker variation.
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Conclusions and Future Work

9.1. Overview

The research presented in this thesis has looked at how speakers refer to objects in visual

domains, with the goal of conveying an intended referent to a hearer who may view

the same scene. I have examined how initial reference may be descriptive, including

properties because they are visually or linguistically interesting, and how speakers are

varied, producing many kinds of output, but with preferences for particular attributes

like color and size. I have presented several models for how to connect a visual input to

a human-like referential output.

By focusing specifically on the domain of real world, visible objects, I hope to come

slightly closer to understanding what humans do when they refer in visual domains, and

how we can begin mimicking the kinds of visual language that humans produce. Work

in this thesis may be used to further the connection between vision and language, aiding

in the ability of a system to automatically generate summaries, captions, or descriptions

from images. This will hopefully be beneficial to improve the state of the art in a variety

of tasks, such as image indexing, vision-based web searches, communication robots, and

assistive NLG technology.

The main contribution that I hope to make is to question the philosophy that unique

identification and deterministic algorithms are the best we can do to generate human-like

output. Rather than producing one referring expression (and only one) and stopping once

a target item has been uniquely identified (or else fail), I have attempted to get closer to

the variation that humans have in referring to the same object by better understanding
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the variety of choices that people make when referring, and creating an algorithm that

models this by producing several referring expressions non-deterministically. This method

does not aim for unique identification, but instead the likelihood of including properties

diminishes as less salient properties are considered and the description becomes longer and

more complex. This is a natural way to account for the phenomena of underspecification

and overspecification common to human references.

The basic approach taken in this thesis was to conduct a series of psycholinguistic studies

regarding specific aspects of visible reference, in each building an annotated corpus of

human reference to real world objects. Findings from these experiments were used to

inform the design of a full REG algorithm that generates human-like reference to visible

objects, and I demonstrate that it performs as well as or better than existing approaches

for several corpora and using several metrics.

9.2. Summary

In Chapter 1, I provide an introduction to natural language generation, referring expres-

sion generation, human vision, and computer vision. In Chapter 2, I review previous

research relevant for this thesis, including the philosophy of reference (what referring is

and what it does), the psychology of reference (how referring works) and computational

approaches to reference (how referring can be modeled). I also summarize models of

visual processing and recent work on object detection in computer vision and what we

may learn from this research.

In Chapter 3, I discuss an exploratory study on initial reference without specific hy-

pothesis testing. I sought to understand how individuals, given an assortment of visually

diverse objects, would initially refer to each in a monologue setting.

Several interesting findings come out of this study. One is the relative predominance

of color modifiers, also found in earlier work. Another is how people refer to object

sizes, which clearly shows that people compare the target object dimensions against the
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dimensions of other objects. We additionally see evidence of part-whole modularity and

analogies, neither of which have received a great deal of attention in work on REG.

From these findings, I suggested several structures that may be useful in generating nat-

ural reference: (1) a spatial representation defining object height, width, depth, and rela-

tions between object parts, (2) a propositional representation that provides information

about color, material, texture, etc., and (3) a knowledge base with representations

for typical object properties. Using structures that define the propositional and spatial

content of objects fits well with work in psycholinguistics, cognitive science and neuro-

physiology discussed in Chapter 2, and may provide the basis to generate a variety of

natural-sounding references from a system that recognizes objects.

The spatial representation proposed in Chapter 3 is simplified to the x- and y-axes of

objects in Chapter 4, where I address specific hypotheses regarding subjects’ references

to object size. In a large-scale study, I elicited references to four different object types

each in 24 different size configurations, and annotated the references to create a large

corpus of size-based referring expressions. Using the size of x- and y-axes of the objects

as the basis for several size features, I propose both a hand-written and a machine-

learning approach to generate six broad size types based on this data. These include

forms for words like “tall”, “thin”, “big”, “small”, etc., picking out different relationships

between the two axes.

Both the hand-written algorithm and the machine learning approach work well on the

corpus created in this chapter, and even better on a novel corpus, the Craft Corpus

introduced in Chapter 3. Using the latter corpus requires tweaking the approach to

generating size a bit, taking the height and width average of other items of the same

type, which is inspired by how people initially view and process the size of objects in a

scene. This method works well, and the size algorithm is later incorporated into a full

REG algorithm in Chapter 7.
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In Chapter 5, we look at the properties of shape and material, examining how they

interact when atypical and typical for an object. In a study conducted in-person, real

world objects were presented to subjects in a director-matcher paradigm. We see some

evidence that atypical shape tends to be mentioned in reference to visible objects, but

the findings are less clear for material.

One issue that arises in this work is the issue of the interconnectedness of different prop-

erties. Most strikingly, the materials of wood and metal were more common to include

when referring to an object than their corresponding colors; some materials imply color,

and this seems to be a factor in the kinds of references that people produce.

In Chapter 6, I briefly examine how common color was across the corpora I built in

Chapters 3, 4, and 5. In the highly diverse Craft Corpus and the relatively uniform fillers

sub-corpus of the Size Corpus, we see that color is exceedingly preferred. In the even

more uniform Size Corpus and the Typicality Corpus, we see less evidence that color

is a preferred attribute, instead seeing a predominance of the attributes being studied in

building each corpus.

The commonality between the Size Corpus and the Typicality Corpus that may explain

this difference is that both corpora had objects of the same type with the same color,

while objects in the Craft Corpus and the fillers sub-corpus of the Size Corpus had objects

of the same type with different colors. This suggests that in addition to the pre-attentive

role that color may have in visual reference, comparison processes of a target object

against another of the same type may also play role.

In Chapter 7, I use previous research discussed in Chapters 1 and 2 to detail the

structures that an ideal computer vision front-end should provide for an REG algorithm

that generates descriptions of objects.

Given this input, I use ideas in the literature and the findings from Chapters 3, 4, 5, and 6

to introduce a new approach to referring expression generation. The algorithm introduced

in this chapter is built to be non-deterministic in order to capture naturalistic human
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variation, using prior likelihoods for the inclusion of each property in the description and

different mechanisms for different visual properties.

In this algorithm, color, because it is one of the most frequently named visual attributes,

one of the most basic visual properties, and plays a role in guiding attention, has a

privileged status, and interacts with interconnected material properties. Size, one of

the most common visual properties after color, is analyzed based on the dimensions

of the objects in the scene to create a variety of size modifier types. Both color and

size operate independently. The goal of the algorithm it not to rule out distractors in

the visual scene; rather, it uses what we have learned about the properties that people

use to describe to create an identifying description. Modifiers are decreasingly likely the

longer the description is, reflecting previous findings that noun phrases rarely have more

than three adjectives, and suggestive of the cognitive load that constructing and uttering

longer descriptions requires.

The algorithm is evaluated in Chapter 8. In this chapter, I use several well-known

corpora in REG, the GRE3D3 corpus and the TUNA corpus, and evaluate against top-

performing implementations of both the Graph-Based Algorithm and the Incremental

Algorithm. Using an alignment method, a majority match method, and a distributional

comparison method, I show that the algorithm I have introduced is competitive with the

state of the art. The mechanisms used in the algorithm will therefore hopefully further

the breadth of the field by suggesting an approach to REG that is robust across visual

domains, and creates several different kinds of human-like expressions, with different

distributions, for visible objects.

9.3. Implications and Future Work

One clear area for further research is connecting my approach to generating object de-

scriptions to the process of describing the spatial relations between objects. In particular,

incorporating work on generating topological or projective relations (Kelleher & Kruijff,
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2006) would allow us to capture almost all of the fundamental aspects of reference to

visible objects; coupling descriptions of each object to descriptions of the spatial relations

between them would also help us to further describe entire scenes.

Chapter 4 demonstrated that incorporating speaker identity into classification signifi-

cantly improved accuracy. Further experiments on size not reported in this thesis demon-

strated that it may be able to group speakers based on the dimensional features that best

predict size modifier preference. This suggests that generating human-like language can

be improved by building models for particular speaker clusters. In a system that gener-

ates natural language, these models can be constructed as speaker ‘profiles’ that follow

different language behavior depending on the goals of the system.

Adding further modalities to this research (e.g., touch and pointing) may even better

capture the kinds of reference that people produce in real world scenes, where they may

be able to physically manipulate the objects. This may be particularly true for describing

properties that are both visual and tactile, such as material (Chapter 5) and texture.

In Chapter 8, I used a probability density function as a way to examine how well the

distribution over output expressions produced by the visible objects algorithm predicted

the frequency of human-produced expressions. This method used no smoothing, which

meant that when an observed expression was not predicted by the algorithm, there was

no way to match the two sets (the probability was 0). In future work, I hope to fine-tune

this evaluation metric, adding some smoothing to allow better comparisons between what

the algorithm predicts and what we observe in human data.

Speaking further to this point, the stochastic function I introduce in Chapter 7 is a first

attempt, and should be refined in future work. I have tried one function that takes into

account typicality, description length, and prior attribute likelihood; there are clearly

more ways than one to combine these factors in a stochastic function, and this should be

further explored.
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Other areas for future work in this vein include the implementation of typicality and

interconnected properties in the algorithm in Chapters 7 and 8. I looked at defining

typicality values for color, and did not see improvement in the algorithm’s accuracy.

There may be a better method for determining typicality, and/or a better method for

implementing the affect of typicality in a stochastic algorithm. I have limited the ex-

amination of interconnected properties to color and material, and clearly evaluation

of interconnected properties should be further expanded before any conclusions can be

made about the utility of this kind of functionality.

Similarly, I have addressed a simple approximation of parallelism in the algorithm, as-

suming that the selection of color does not affect the selection of size (and vice versa).

It would be interesting to explore parallel generation in greater depth, for example, with

different speeds for different parallel property analyses affecting the output description.

I also hope to connect the approaches discussed here directly to computer vision output

in future work; I have discussed generation from an ‘ideal’, gold-standard visual input,

but have not here explored generation from a computer vision output. As part of this

goal, I have constructed an end-to-end vision-to-language system not discussed in this

thesis (Mitchell, van Deemter, & Reiter, 2011), but have not yet provided functionality

for the fine-grained referential preferences discussed in this thesis.

I hope that ideas from this thesis will be useful in further work on referring expression

generation. In particular:

(1) The gap between reference and description is not that wide. Reference can in-

corporate description, and developing algorithms that aim to match what people

describe in a visual scene can lead to the generation of human-like reference.

(2) What we know about how the visual system works – and how it is likely to affect

what we talk about – is a useful guide in developing a visual reference algorithm.



Chapter 9.3 Page 240

(3) Defining values for visual attributes as multi-featured vectors (rather than as a

single point) aids in generating rich, natural variation for different visual prop-

erties. For example, the space that an object takes up in a visual input can be

represented as a vector of height and width features, used to generate a wide

range of natural-sounding size descriptors for an object (big, small, thin, fat,

thick. . . ).

(4) Probabilistically generating lemmas for each visual property of an object based

on (a) the prior likelihood of that property being mentioned, and (b) the number

of lemmas created before the current property is processed, may lead to human-

like variation in the kinds of expressions produced.

(5) Color and size should have a privileged status in reference in visual domains,

and processes that construct modifiers for each may operate independently of

one another. Such independence may be one of the explanations for the amount

of overspecification one finds in referring expressions.

(6) A knowledge base of what is typical about objects may be used to guide analogies

and what is remarkable in a target object.

(7) When people describe entire scenes, many of the principles that we have uncov-

ered still apply.

I have demonstrated many of the principles underlying initial reference to objects in a

visual domain. With this research, we can now begin to automatically refer to visible

objects in a way that sounds human-like and natural.
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Appendix A

Craft Study - Annotated Faces

trial face (t)
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Appendix B

Craft Study - Instructions for Participants

Face Construction Task - Ethics Details

For this experiment, your voice will be recorded. You are under no obligation to complete
this task, and may leave at any time. Your participation is voluntary, and you may
withdraw from the research at any point without penalty and for any reason. Your data
will be treated with full confidentiality and if the results are published, you will not
be identified. All recordings will not be identifiable. After the experiment, you will be
debriefed with an explanation of the study.

Thanks!
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Face Construction Task - Directions

Thank you for participating in our study! You will be giving instructions for a craft
face construction task. This should take about half an hour. We’re looking for people
to clearly explain how to put together the face in each picture, using the craft items on
the table. The instructions you give should be clear enough for someone without the
pictures to be able to put each face together using the same craft objects. If you have
any questions, please let us know before you begin. Once you start describing, we cannot
give you any feedback!

Directions

• In front of you, you will see a stack of photographs and a bunch of craft supplies.
• Look at the first photograph, and explain how to construct it utilizing the craft

supplies provided.
• Please speak clearly enough for someone without the photograph to be able to

reconstruct the face based on your directions.
• Don’t worry about reshaping some of the supplies for the faces; the shaped pieces

on the table are close enough to those in the original pictures.
• When you are done with the first photograph, you may move on to the second.

You may introduce this in the recording by saying “Next face”.
• Assume that a listener may not construct the faces in the same order as they

appear in your stack, so try to give directions specific only to the current face.
• Repeat this for all five photographs.
• When you are done with all five photographs, you may just leave everything as

is. We will have a feedback sheet for you to let us know what you thought about
the task.

Thanks again!



Appendix C

Size Study - Instructions for Participants

Below is an example section of an Amazon Mechanical Turk HIT shown to participants,
with instructions included.
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Below is an example section of an Amazon Mechanical Turk HIT shown to participants,
with instructions included. (Continued.)

(And continues down as subjects scroll.)



Appendix D

Typicality Study - Instructions for Participants

In this study, you will be instructing the person across from you, ,
which objects to place in front of him/her to recreate the pictures you see on the screen.
I will be recording then transcribing this, then deleting the recording.

There will be 7 pictures, and you can flip through them as quickly or as slowly as you’d
like.

Before the study, you’re free to touch the objects. Once the study begins, you can’t touch
or point to the objects – you can only describe them.

When instructing , the exact placement of the objects doesn’t
matter, but try and explain how to line them up roughly on each column of dots. [Gesture
to each row, numbering them 1 – 5].

After you describe which object to move, will lift his/her hand
to begin moving it. When his/her hand is lifted over the set of objects, you can’t speak
until the object is in the area of the dots. What I’m trying to do here is just avoid the
situation where you just say “left, left, left...” [motion hand above objects]. Just say
which object you mean, and let grab it. ,
if it’s unclear which object is meant, just make your best guess. You can correct an
object once the incorrect object has been placed.

Feel free to examine the objects now; you won’t be able to touch them once the study
begins.

We’ll begin with a practice picture, which should be the first picture in your set, and
then you can ask me any questions you have.
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