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Abstract

Two recent approaches have achieved
state-of-the-art results in image caption-
ing. The first uses a pipelined process
where a set of candidate words is gen-
erated by a convolutional neural network
(CNN) trained on images, and then a max-
imum entropy (ME) language model is
used to arrange these words into a coherent
sentence. The second uses the penultimate
activation layer of the CNN as input to a
recurrent neural network (RNN) that then
generates the caption sequence. In this pa-
per, we compare the merits of these dif-
ferent language modeling approaches for
the first time by using the same state-of-
the-art CNN as input. We examine is-
sues in the different approaches, includ-
ing linguistic irregularities, caption repe-
tition, and data set overlap. By combining
key aspects of the ME and RNN methods,
we achieve a new record performance over
previously published results on the bench-
mark COCO dataset. However, the gains
we see in BLEU do not translate to human
judgments.

1 Introduction

Recent progress in automatic image captioning
has shown that an image-conditioned language
model can be very effective at generating captions.
Two leading approaches have been explored for
this task. The first decomposes the problem into
an initial step that uses a convolutional neural net-
work to predict a bag of words that are likely to
be present in a caption; then in a second step, a
maximum entropy language model (ME LM) is
used to generate a sentence that covers a mini-
mum number of the detected words (Fang et al.,
2015). The second approach uses the activations

from final hidden layer of an object detection CNN
as the input to a recurrent neural network lan-
guage model (RNN LM). This is referred to as a
Multimodal Recurrent Neural Network (MRNN)
(Karpathy and Fei-Fei, 2015; Mao et al., 2015;
Chen and Zitnick, 2015). Similar in spirit is the
the log-bilinear (LBL) LM of Kiros et al. (2014).

In this paper, we study the relative merits of
these approaches. By using an identical state-of-
the-art CNN as the input to RNN-based and ME-
based models, we are able to empirically com-
pare the strengths and weaknesses of the lan-
guage modeling components. We find that the
approach of directly generating the text with an
MRNN1 outperforms the ME LM when measured
by BLEU on the COCO dataset (Lin et al., 2014),2

but this recurrent model tends to reproduce cap-
tions in the training set. In fact, a simple k-nearest
neighbor approach, which is common in earlier re-
lated work (Farhadi et al., 2010; Mason and Char-
niak, 2014), performs similarly to the MRNN. In
contrast, the ME LM generates the most novel
captions, and does the best at captioning images
for which there is no close match in the training
data. With a Deep Multimodal Similarity Model
(DMSM) incorporated,3 the ME LM significantly
outperforms other methods according to human
judgments. In sum, the contributions of this pa-
per are as follows:

1. We compare the use of discrete detections
and continuous valued CNN activations as
the conditioning information for language
models trained to generate image captions.

2. We show that a simple k-nearest neighbor re-
trieval method performs at near state-of-the-
art for this task and dataset.

3. We demonstrate that a state-of-the-art
1In our case, a gated recurrent neural network (GRNN) is

used (Cho et al., 2014), similar to an LSTM.
2This is the largest image captioning dataset to date.
3As described by Fang et al. (2015).
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MRNN-based approach tends to reconstruct
previously seen captions; in contrast, the
two stage ME LM approach achieves similar
or better performance while generating
relatively novel captions.

4. We advance the state-of-the-art BLEU scores
on the COCO dataset.

5. We present human evaluation results on the
systems with the best performance as mea-
sured by automatic metrics.

6. We explore several issues with the statistical
models and the underlying COCO dataset, in-
cluding linguistic irregularities, caption repe-
tition, and data set overlap.

2 Models

All language models compared here are trained
using output from the same state-of-the-art CNN.
The CNN used is the 16-layer variant of VGGNet
(Simonyan and Zisserman, 2014) which was ini-
tially trained for the ILSVRC2014 classification
task (Russakovsky et al., 2015), and then fine-
tuned on the Microsoft COCO data set (Fang et
al., 2015; Lin et al., 2014).

2.1 Detector Conditioned Models

We study the effect of leveraging an explicit de-
tection step to find key objects/attributes in images
before generation, examining both an ME LM ap-
proach as reported in previous work (Fang et al.,
2015), and a novel LSTM approach introduced
here. Both use a CNN trained to output a bag of
words indicating the words that are likely to ap-
pear in a caption, and both use a beam search to
find a top-scoring sentence that contains a subset
of the words. This set of words is dynamically ad-
justed to remove words as they are mentioned.

We refer the reader to Fang et al. (2015) for a
full description of their ME LM approach, whose
500-best outputs we analyze here.4 We also in-
clude the output from their ME LM that leverages
scores from a Deep Multimodal Similarity Model
(DMSM) during n-best re-ranking. Briefly, the
DMSM is a non-generative neural network model
which projects both the image pixels and caption
text into a comparable vector space, and scores
their similarity.

In the LSTM approach, similar to the ME LM
approach, we maintain a set of likely wordsD that

4We will refer to this system as D-ME.

have not yet been mentioned in the caption un-
der construction. This set is initialized to all the
words predicted by the CNN above some thresh-
old α.5 The words already mentioned in the
sentence history h are then removed to produce
a set of conditioning words D \ {h}. We in-
corporate this information within the LSTM by
adding an additional input encoded to represent
the remaining visual attributes D \ {h} as a con-
tinuous valued auxiliary feature vector (Mikolov
and Zweig, 2012). This is encoded as f(sh−1 +∑

v∈D\{h} gv + Uqh,D), where sh−1 and gv are
respectively the continuous-space representations
for last word h−1 and detector v ∈ D \ {h}, U is
learned matrix for recurrent histories, and f(·) is
the sigmoid transformation.

2.2 Multimodal Recurrent Neural Network

In this section, we explore a model directly con-
ditioned on the CNN activations rather than a set
of word detections. Our implementation is very
similar to captioning models described in Karpa-
thy and Fei-Fei (2015), Vinyals et al. (2014), Mao
et al. (2015), and Donahue et al. (2014). This
joint vision-language RNN is referred to as a Mul-
timodal Recurrent Neural Network (MRNN).

In this model, we feed each image into our
CNN and retrieve the 4096-dimensional final hid-
den layer, denoted as fc7. The fc7 vector is
then fed into a hidden layer H to obtain a 500-
dimensional representation that serves as the ini-
tial hidden state to a gated recurrent neural net-
work (GRNN) (Cho et al., 2014). The GRNN
is trained jointly with H to produce the caption
one word at a time, conditioned on the previous
word and the previous recurrent state. For decod-
ing, we perform a beam search of size 10 to emit
tokens until an END token is produced. We use
a 500-dimensional GRNN hidden layer and 200-
dimensional word embeddings.

2.3 k-Nearest Neighbor Model

Both Donahue et al. (2015) and Karpathy and Fei-
Fei (2015) present a 1-nearest neighbor baseline.
As a first step, we replicated these results using the
cosine similarity of the fc7 layer between each
test set image t and training image r. We randomly
emit one caption from t’s most similar training im-
age as the caption of t. As reported in previous
results, performance is quite poor, with a BLEU

5In all experiments in this paper, α=0.5.
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Figure 1: Example of the set of candidate captions for an
image, the highest scoring m captions (green) and the con-
sensus caption (orange). This is a real example visualized in
two dimensions.

score of 11.2%.
However, we explore the idea that we may be

able to find an optimal k-nearest neighbor consen-
sus caption. We first select the k = 90 nearest
training images of a test image t as above. We de-
note the union of training captions in this set as
C = c1, ..., c5k.6 For each caption ci, we com-
pute the n-gram overlap F-score between ci and
each other caption in C. We define the consen-
sus caption c∗ to be caption with the highest mean
n-gram overlap with the other captions in C. We
have found it is better to only compute this average
among ci’s m = 125 most similar captions, rather
than all of C. The hyperparameters k and m were
obtained by a grid search on the validation set.

A visual example of the consensus caption is
given in Figure 1. Intuitively, we are choosing
a single caption that may describe many different
images that are similar to t, rather than a caption
that describes the single image that is most similar
to t. We believe that this is a reasonable approach
to take for a retrieval-based method for captioning,
as it helps ensure incorrect information is not men-
tioned. Further details on retrieval-based methods
are available in, e.g., (Ordonez et al., 2011; Ho-
dosh et al., 2013).

3 Experimental Results

3.1 The Microsoft COCO Dataset
We work with the Microsoft COCO dataset (Lin
et al., 2014), with 82,783 training images, and
the validation set split into 20,243 validation im-
ages and 20,244 testval images. Most images con-
tain multiple objects and significant contextual in-
formation, and each image comes with 5 human-

6Each training image has 5 captions.

LM PPLX BLEU METEOR
D-ME† 18.1 23.6 22.8

D-LSTM 14.3 22.4 22.6

MRNN 13.2 25.7 22.6

k-Nearest Neighbor - 26.0 22.5
1-Nearest Neighbor - 11.2 17.3

Table 1: Model performance on testval. †: From (Fang et al.,
2015).

D-ME+DMSM a plate with a sandwich and a cup of coffee
MRNN a close up of a plate of food
D-ME+DMSM+MRNN a plate of food and a cup of coffee
k-NN a cup of coffee on a plate with a spoon

D-ME+DMSM a black bear walking across a lush green forest
MRNN a couple of bears walking across a dirt road
D-ME+DMSM+MRNN a black bear walking through a wooded area
k-NN a black bear that is walking in the woods

D-ME+DMSM a gray and white cat sitting on top of it
MRNN a cat sitting in front of a mirror
D-ME+DMSM+MRNN a close up of a cat looking at the camera
k-NN a cat sitting on top of a wooden table

Table 2: Example generated captions.

annotated captions. The images create a challeng-
ing testbed for image captioning and are widely
used in recent automatic image captioning work.

3.2 Metrics

The quality of generated captions is measured au-
tomatically using BLEU (Papineni et al., 2002)
and METEOR (Denkowski and Lavie, 2014).
BLEU roughly measures the fraction of N -grams
(up to 4 grams) that are in common between a hy-
pothesis and one or more references, and penalizes
short hypotheses by a brevity penalty term.7 ME-
TEOR (Denkowski and Lavie, 2014) measures un-
igram precision and recall, extending exact word
matches to include similar words based on Word-
Net synonyms and stemmed tokens. We also re-
port the perplexity (PPLX) of studied detection-
conditioned LMs. The PPLX is in many ways
the natural measure of a statistical LM, but can be
loosely correlated with BLEU (Auli et al., 2013).

3.3 Model Comparison

In Table 1, we summarize the generation perfor-
mance of our different models. The discrete de-
tection based models are prefixed with “D”. Some
example generated results are show in Table 2.

We see that the detection-conditioned LSTM
LM produces much lower PPLX than the
detection-conditioned ME LM, but its BLEU
score is no better. The MRNN has the lowest
PPLX, and highest BLEU among all LMs stud-

7We use the length of the reference that is closest to the
length of the hypothesis to compute the brevity penalty.
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Re-Ranking Features BLEU METEOR
D-ME † 23.6 22.8
+ DMSM † 25.7 23.6
+ MRNN 26.8 23.3
+ DMSM + MRNN 27.3 23.6

Table 3: Model performance on testval after re-ranking.
†: previously reported and reconfirmed BLEU scores from
(Fang et al., 2015). +DMSM had resulted in the highest score
yet reported.

ied in our experiments. It significantly improves
BLEU by 2.1 absolutely over the D-ME LM base-
line. METEOR is similar across all three LM-
based methods.

Perhaps most surprisingly, the k-nearest neigh-
bor algorithm achieves a higher BLEU score than
all other models. However, as we will demonstrate
in Section 3.5, the generated captions perform sig-
nificantly better than the nearest neighbor captions
in terms of human quality judgements.

3.4 n-best Re-Ranking

In addition to comparing the ME-based and RNN-
based LMs independently, we explore whether
combining these models results in an additive im-
provement. To this end, we use the 500-best list
from the D-ME and add a score for each hypoth-
esis from the MRNN.8 We then re-rank the hy-
potheses using MERT (Och, 2003). As in previous
work (Fang et al., 2015), model weights were opti-
mized to maximize BLEU score on the validation
set. We further extend this combination approach
to the D-ME model with DMSM scores included
during re-ranking (Fang et al., 2015).

Results are show in Table 3. We find that com-
bining the D-ME, DMSM, and MRNN achieves a
1.6 BLEU improvement over the D-ME+DMSM.

3.5 Human Evaluation

Because automatic metrics do not always corre-
late with human judgments (Callison-Burch et al.,
2006; Hodosh et al., 2013), we also performed hu-
man evaluations using the same procedure as in
Fang et al. (2015). Here, human judges were pre-
sented with an image, a system generated caption,
and a human generated caption, and were asked
which caption was “better”.9 For each condition,
5 judgments were obtained for 1000 images from
the testval set.

8The MRNN does not produce a diverse n-best list.
9The captions were randomized and the users were not

informed which was which.

Results are shown in Table 4. The D-
ME+DMSM outperforms the MRNN by 5 per-
centage points for the “Better Or Equal to Hu-
man” judgment, despite both systems achieving
the same BLEU score. The k-Nearest Neighbor
system performs 1.4 percentage points worse than
the MRNN, despite achieving a slightly higher
BLEU score. Finally, the combined model does
not outperform the D-ME+DMSM in terms of hu-
man judgments despite a 1.6 BLEU improvement.

Although we cannot pinpoint the exact reason
for this mismatch between automated scores and
human evaluation, a more detailed analysis of the
difference between systems is performed in Sec-
tions 4 and 5.

Human Judgements
Better Better

Approach or Equal BLEU
D-ME+DMSM 7.8% 34.0% 25.7
MRNN 8.8% 29.0% 25.7
D-ME+DMSM+MRNN 5.7% 34.2% 27.3
k-Nearest Neighbor 5.5% 27.6% 26.0

Table 4: Results when comparing produced captions to those
written by humans, as judged by humans. These are the per-
cent of captions judged to be “better than” or “better than or
equal to” a caption written by a human.

4 Language Analysis

Examples of common mistakes we observe on the
testval set are shown in Table 5. The D-ME system
has difficulty with anaphora, particularly within
the phrase “on top of it”, as shown in examples
(1), (2), and (3). This is likely due to the fact that is
maintains a local context window. In contrast, the
MRNN approach tends to generate such anaphoric
relationships correctly.

However, the D-ME LM maintains an explicit
coverage state vector tracking which attributes
have already been emitted. The MRNN implicitly
maintains the full state using its recurrent layer,
which sometimes results in multiple emission mis-
takes, where the same attribute is emitted more
than once. This is particularly evident when coor-
dination (“and”) is present (examples (4) and (5)).

4.1 Repeated Captions

All of our models produce a large number of cap-
tions seen in the training and repeated for differ-
ent images in the test set, as shown in Table 6
(also observed by Vinyals et al. (2014) for their
LSTM-based model). There are at least two po-
tential causes for this repetition.

103



D-ME+DMSM MRNN
1 a slice of pizza sitting on top of it a bed with a red blanket on top of it

2 a black and white bird perched on
top of it

a birthday cake with candles on top
of it

3 a little boy that is brushing his
teeth with a toothbrush in her
mouth

a little girl brushing her teeth with a
toothbrush

4 a large bed sitting in a bedroom a bedroom with a bed and a bed

5 a man wearing a bow tie a man wearing a tie and a tie

Table 5: Example errors in the two basic approaches.

System Unique Seen In
Captions Training

Human 99.4% 4.8%
D-ME+DMSM 47.0% 30.0%
MRNN 33.1% 60.3%
D-ME+DMSM+MRNN 28.5% 61.3%
k-Nearest Neighbor 36.6% 100%

Table 6: Percentage unique (Unique Captions) and novel
(Seen In Training) captions for testval images. For example,
28.5% unique means 5,776 unique strings were generated for
all 20,244 images.

First, the systems often produce generic cap-
tions such as “a close up of a plate of food”, which
may be applied to many publicly available im-
ages. This may suggest a deeper issue in the train-
ing and evaluation of our models, which warrants
more discussion in future work. Second, although
the COCO dataset and evaluation server10 has en-
couraged rapid progress in image captioning, there
may be a lack of diversity in the data. We also note
that although caption duplication is an issue in all
systems, it is a greater issue in the MRNN than the
D-ME+DMSM.

5 Image Diversity

The strong performance of the k-nearest neighbor
algorithm and the large number of repeated cap-
tions produced by the systems here suggest a lack
of diversity in the training and test data.11

We believe that one reason to work on image
captioning is to be able to caption compositionally
novel images, where the individual components of
the image may be seen in the training, but the en-
tire composition is often not.

In order to evaluate results for only compo-
sitionally novel images, we bin the test images
based on visual overlap with the training data.
For each test image, we compute the fc7 cosine
similarity with each training image, and the mean
value of the 50 closest images. We then compute
BLEU on the 20% least overlapping and 20% most

10http://mscoco.org/dataset/
11This is partially an artifact of the manner in which the

Microsoft COCO data set was constructed, since each image
was chosen to be in one of 80 pre-defined object categories.

Condition Train/Test Visual Overlap
BLEU

Whole 20% 20%
Set Least Most

D-ME+DMSM 25.7 20.9 29.9
MRNN 25.7 18.8 32.0
D-ME+DMSM+MRNN 27.3 21.7 32.0
k-Nearest Neighbor 26.0 18.4 33.2

Table 7: Performance for different portions of testval, based
on visual overlap with the training.

overlapping subsets.
Results are shown in Table 7. The D-

ME+DMSM outperforms the k-nearest neighbor
approach by 2.5 BLEU on the “20% Least” set,
even though performance on the whole set is com-
parable. Additionally, the D-ME+DMSM out-
performs the MRNN by 2.1 BLEU on the “20%
Least” set, but performs 2.1 BLEU worse on
the “20% Most” set. This is evidence that D-
ME+DMSM generalizes better on novel images
than the MRNN; this is further supported by the
relatively low percentage of captions it gener-
ates seen in the training data (Table 6) while still
achieving reasonable captioning performance. We
hypothesize that these are the main reasons for
the strong human evaluation results of the D-
ME+DMSM shown in Section 3.5.

6 Conclusion

We have shown that a gated RNN conditioned di-
rectly on CNN activations (an MRNN) achieves
better BLEU performance than an ME LM or
LSTM conditioned on a set of discrete activations;
and a similar BLEU performance to an ME LM
combined with a DMSM. However, the ME LM
+ DMSM method significantly outperforms the
MRNN in terms of human quality judgments. We
hypothesize that this is partially due to the lack of
novelty in the captions produced by the MRNN.
In fact, a k-nearest neighbor retrieval algorithm
introduced in this paper performs similarly to the
MRNN in terms of both automatic metrics and hu-
man judgements.

When we use the MRNN system alongside the
DMSM to provide additional scores in MERT re-
ranking of the n-best produced by the image-
conditioned ME LM, we advance by 1.6 BLEU
points on the best previously published results on
the COCO dataset. Unfortunately, this improve-
ment in BLEU does not translate to improved hu-
man quality judgments.

104



References
Michael Auli, Michel Galley, Chris Quirk, and Ge-

offrey Zweig. 2013. Joint language and transla-
tion modeling with recurrent neural networks. In
Proc. Conf. Empirical Methods Natural Language
Process. (EMNLP), pages 1044–1054.

Chris Callison-Burch, Miles Osborne, and Philipp
Koehn. 2006. Re-evaluation the role of bleu in
machine translation research. In EACL, volume 6,
pages 249–256.

Xinlei Chen and C. Lawrence Zitnick. 2015. Mind’s
eye: A recurrent visual representation for image cap-
tion generation. In Proc. Conf. Comput. Vision and
Pattern Recognition (CVPR).

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. 2014. Learning phrase representations
using RNN encoder-decoder for statistical machine
translation. CoRR.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: language specific translation evaluation
for any target language. In Proc. EACL 2014 Work-
shop Statistical Machine Translation.

Jeff Donahue, Lisa Anne Hendricks, Sergio Guadar-
rama, Marcus Rohrbach, Subhashini Venugopalan,
Kate Saenko, and Trevor Darrell. 2014. Long-term
recurrent convolutional networks for visual recogni-
tion and description. arXiv:1411.4389 [cs.CV].

Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadar-
rama, Marcus Rohrbach, Subhashini Venugopalan,
Kate Saenko, and Trevor Darrell. 2015. Long-term
recurrent convolutional networks for visual recogni-
tion and description. In Proc. Conf. Comput. Vision
and Pattern Recognition (CVPR).

Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh Sri-
vastava, Li Deng, Piotr Dollá, Margaret Mitchell,
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