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ABSTRACT
Speech produced by subjects during neuropsychological ex-
ams can provide markers other than test performance, via
spoken language characteristics that discriminate between
subject groups. We present preliminary results on the util-
ity of such markers, automatically derived from spoken re-
sponses to narrative recall tests, in discriminating between
healthy elderly and subjects with Mild Cognitive Impair-
ment (MCI). Given the audio and transcript of the retellings,
a range of markers were automatically derived, including
(among others) pause frequency and grammatical complex-
ity. Certain spoken language derived markers, which do not
measure the fidelity of the retelling to the original narrative,
show statistically significant differences between the group
means, when calculated either manually or automatically.

1. INTRODUCTION

Mild Cognitive Impairment (MCI), and in particular amnes-
tic MCI, the earliest clinically defined stage of Alzheimer’s
related dementia, often goes undiagnosed due to the inad-
equacy of common screening tests such as the MMSE for
reliably detecting relatively subtle impairments. Linguistic
memory tests, such as word list and narrative recall, are more
effective than the MMSE in detecting MCI, yet are still in-
dividually insufficient for adequate discrimination between
healthy and impaired subjects. Because of this, a battery of
examinations is typically used to improve psychometric clas-
sification. Yet the summary recall scores derived from these
linguistic memory tests (total correctly recalled) ignore po-
tentially useful information in the characteristics of the spo-
ken language itself. Narrative retellings provide a natural,
conversational speech sample that can be analyzed for many
characteristics of the speech and language that have been
shown to discriminate between healthy and impaired sub-
jects, including syntactic complexity [10, 11] or mean pause
duration [16]. These measures go beyond simply measuring
fidelity to the narrative, thus providing key additional dimen-
sions for improved diagnosis of impairment.

This study focuses on spoken language markers derived
from transcribed audio of narratives elicited as part of the
Wechsler Logical Memory (LM) tests, which include both
an immediate (LM I) and delayed (LM II) recall. Working
with neuropsychological tests has several key benefits. First,
methods will have direct clinical applicability, because they
will apply to standard tests that are already in use in clinical

settings. Second, to the extent that additional discrimina-
tive utility can be derived from the output of any particular
neuropsychological test, the number of tests required for re-
liable screening will be reduced, leading to a better chance
of widespread testing due to reduced demands on both clin-
icians and patients. Finally, the relatively constrained elic-
itation, focused on a fixed narrative, makes automation of
marker extraction particularly feasible, because of the nar-
row topic-focused language use. As we shall demonstrate
below, this ease of automation does not come at the expense
of the utility of the spoken language markers: there remain
enough differences in the spoken language to provide mark-
ers of good discriminative utility.

2. METHODS
2.1. Data
We collected audio recordings of 44 neuropsychological ex-
aminations administered at the Layton Aging & Alzheimer’s
Disease Center, an NIA-funded Alzheimer’s center for re-
search at OHSU. For this study, we partitioned subjects into
two groups: those who were assigned a Clinical Dementia
Rating (CDR) of 0 (healthy) and those who were assigned a
CDR of 0.5 (MCI). The CDR [13] is assigned with access to
clinical and cognitive test information, independent of per-
formance on the battery of neuropsychological tests used for
research study.1 Studies at the Layton Center, from which
our subjects were drawn, define MCI in two ways: via the
CDR scale and via a psychometrically driven concept of de-
graded performance on neuropsychological tests. Given that
we are studying some of the very neuropsychological tests
that play a role in the latter definition of MCI, we must rely
on those which do not depend on these test scores – in partic-
ular the CDR scale. The global CDR score has been shown
to have high expert inter-annotator reliability [14], and, crit-
ically, provides subject assessments that are independent of
the neuropsychological exams being used in this study.

Of the collected recordings, three subjects were
recorded twice; for the current study only one recording was
used for each subject. Two subjects were assigned a CDR
of 1.0 and were excluded from the study; two further sub-
jects were excluded for errors in the recording that resulted
in missing audio. Of the remaining 37 subjects, 22 were in
the healthy elderly group (CDR = 0) and 15 were in the MCI
elderly group (CDR = 0.5).

1See [13] for specific details about the CDR.



CDR = 0 CDR = 0.5
(n=22) (n=15)

Measure M SD M SD t(35)
Age 87.0 9.6 91.3 4.5 −1.59
Education (Y) 14.6 2.2 14.1 2.8 0.68
MMSE 28.6 1.3 25.8 2.8 4.10***

Word List (A) 20.5 3.9 15.7 3.1 4.00***

Word List (R) 7.0 1.7 3.9 1.4 5.97***

Wechsler LM I 17.5 4.3 10.3 4.0 5.17***

Wechsler LM II 16.0 4.2 9.0 4.8 4.69***

Cat.Fluency (A) 17.0 3.5 13.3 4.1 3.00**

Cat.Fluency (V) 13.0 4.5 9.1 3.4 2.86**

Digits (F) 6.3 1.5 5.9 1.2 0.84
Digits (B) 4.6 1.0 4.6 1.2 0.10

Table 1. Neuropsychological test results for subjects.
*** p < 0.001; ** p < 0.01

2.2. Neuropsychological Tests
Table 1 presents means and standard deviations for age,
years of education and the scores of a number of standard
neuropsychological tests that were administered during the
recorded session. These tests include: the Mini Mental
State Examination (MMSE); the CERAD Word List Acqui-
sition (A) and Recall (R) tests; the Wechsler Logical Mem-
ory (LM) I (immediate) and II (delayed) narrative recall
tests; Category Fluency, Animals (A) and Vegetables (V);
and Digit Span (WAIS-R) forward (F) and backward (B).

2.3. Spoken language markers
To evaluate the utility of automation of spoken language
marker extraction, we first must extract markers manually.
We manually annotated the Wechsler Logical Memory I/II
retellings to allow for manual marker extraction, and estab-
lished markers for which there was a statistically significant
difference between group means. Data annotation included
producing (i) a time-aligned transcript of each retelling, from
which speech duration-based markers could be derived; and
(ii) a full syntactic parse tree, from which syntactic markers
could be derived. In addition to allowing for manual marker
extraction, this annotation provides training and evaluation
data for automated annotation.

2.3.1. Syntactic complexity markers
For this study, we followed the syntactic annotation style of
the well-known University of Pennsylvania Wall St. Jour-
nal Treebank [12], an example of which is shown in Figure
1. This tree segments the string “she was a cook in a cafete-
ria” into hierarchically arranged labeled constituents. For ex-
ample, in this particular tree, there is a prepositional phrase
(PP) consisting of the words “in a cafeteria”, and three noun
phrases (NP) for “she”, “a cook”, and “a cafeteria”. The spo-
ken language of the narrative retellings contain disfluencies
as well as sentence fragments, ungrammaticalities, and filled
pauses. We assume that the transcription includes disfluen-
cies in the utterance, but that disfluent regions (“EDITED”
in the Penn Treebank) are indicated in the transcription.

There are many approaches to scoring syntactic com-
plexity, such as the scoring methods of Yngve [17] and Fra-
zier [7]. Yngve [17] is a very simple scoring approach based
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Fig. 1. Penn Treebank style syntactic annotation

on tree shapes which we will discuss below. Frazier [7] dif-
fers from the Yngve score by explicitly penalizing embed-
ding. D-Level [15] is a composite score associated with cer-
tain kinds of constructions. In addition to these composite
metrics, the counts of certain kinds of syntactic phenomena,
e.g., embedded clauses, can be used as indicators of syntactic
complexity. Cheung and Kemper [6] found that all of these
syntactic complexity measures were very highly correlated,
hence for this study we will focus on the relatively simple
Yngve metric, as well as measures such as words per clause.

The Yngve approach gives scores to branches as fol-
lows: the rightmost branch receives a score of 0, and each
branch moving towards the left gets one more than the
branch to its right. So, for example, the ternary branching
tree in Figure 2, with three branches at the root of the tree
(labeled with D), gives a score of 0 to the rightmost branch,
a score of 1 to the middle branch, and a score of 2 to the
leftmost branch. The algorithm gives a score to each word,
calculated by summing the weights on all branches from the
root of the tree at the top, down to the word. So, for exam-
ple, the letter “a” in the left-branching tree of Figure 2(C)
is reached by following the left-branch three times. Each
left-branch is given a score of 1, hence the letter “a” in the
left-branching tree gets a score of 3. In that tree, the letter
“b” gets a score of 2, the letter “c” a score of 1 and the letter
“d” a score of 0. For the string “a b c d” in that tree, the mean
Yngve syntactic complexity score is 1.5 (6 total points over
4 words). In contrast, the right-branching structure gives a
score of 1 to a, b and c, and a score of 0 to d, for a total score
of 3 and a mean of 0.75, half of the left-branching score. The
other two tree shapes in Figure 2 give a mean score of 1.25.

We also calculated the mean words per clause in a
retelling. A clause is defined as a constituent in the parse
tree with one of the Penn Treebank clause labels: S, SBAR,
SQ, SBARQ or SINV. The number of words is provided by
the transcript, and the number of clauses by the syntactic
parse tree, either manually or automatically annotated.
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Fig. 2. Four tree shapes, and branch scores for calculating Yn-
gve syntactic complexity metric: A) right-branching; B) center-
embedded; C) left-branching; and D) ternary branching.



2.3.2. Speech duration markers
In addition to markers derived from the syntactic structure of
the utterances in the retelling, we derived markers from tem-
poral aspects of the speech sample, such as number of pauses
and total pause duration. We follow Singh et al. [16] in set-
ting a 1 second minimum for counting silence as a pause.
Given the number of words in the sample (W ), the number of
pauses (N ), the total pause time (P ) and the total time of the
sample (T ), we can calculate a number of markers, again fol-
lowing [16], including: Verbal Rate (W/T ), Phonation Rate
((T−P )/T ), Mean Duration of Pauses (P/N ) and Standard-
ized Pause Rate (W/N ). These markers can be deterministi-
cally calculated given a time-aligned transcription, whether
the time-alignment is manually or automatically produced.

2.4. Automated Marker Extraction
2.4.1. Parsing for Syntactic Complexity Markers
Automation of syntactic complexity marker extraction was
done through the use of a high-accuracy statistical parser.
For this study, we chose to use the Charniak parser, which
has the highest reported accuracy on more than one stan-
dard parsing task [3, 4, 5]. This parser is available for re-
search purposes, and is trainable. When parsing spontaneous
speech, the best practice is to remove disfluencies in advance
of parsing [4], which was done for these trials.

To evaluate parsing accuracy, constituents are associated
with spans of words. For example, in the tree in Figure 1,
there is a VP (verb phrase) constituent that spans the words
“was a cook in a cafeteria”, as well as an NP constituent
spanning the words “a cook” and a PP constituent spanning
“in a cafeteria”. We can compare the manually annotated
parse tree with the tree that an automatic parser produces by
counting how many of the constituents in the tree have the
same label (e.g., NP, PP, VP) and the same span of words. If
a labeled constituent with a particular span exists in both the
true (manually annotated) tree and in the tree produced by
the automatic parser, we say that the constituents match. La-
beled precision (LP) is the number of matching constituents
divided by the number of constituents in the automatic parse.
Labeled recall (LR) is the number of matching constituents
divided by the number of constituents in the true parse. F-
measure accuracy is the harmonic mean of LP and LR. These
are the most widely used parser evaluation measures in the
research literature, known as the PARSEVAL metrics [2].

The baseline system was trained on the Switchboard
Treebank, part of the Penn Treebank-3, released through the
Linguistics Data Consortium2. This consists of syntactically
annotated telephone conversations on a variety of topics,
which is closer to the conversational style of the narrative
retellings than other syntactically annotated corpora, such as
the WSJ Treebank. The Switchboard Treebank contains ap-
proximately 1 million words, and uses the same annotation
style that we used when manually annotating the collected
narrative retellings. The results using the model trained on
this out-of-domain data are the Baseline row in Table 2.

2http://www.ldc.upenn.edu catalog number LDC99T42

System LR LP F-measure
Baseline 84.4 86.8 85.6
Domain adapted 87.0 88.4 87.7

Table 2. Parser accuracy using a baseline system (trained on out-
of-domain data only) versus using a domain adapted system.

To perform domain adaptation, we used a cross-
validation technique, so that we could evaluate parsing ac-
curacy over all retellings. For each of the 37 subjects, we
created a small in-domain training corpus consisting of the
retellings of the other 36 subjects. We then performed MAP
adaptation [8, 1] of the baseline model, using count merging
with an in-domain scale of 100, to produce a domain adapted
model. In such a way, for each subject, the subject’s own ut-
terances (and the parses of those utterances) were not seen in
the training data, thus simulating a real test-time application
of the parser. The results are shown in Table 2. Adaptation
improved the parsing accuracy by over two percent absolute
(15% relative error reduction) versus the baseline. We used
the adapted models to produce trees for automated syntactic
complexity marker extraction.

2.4.2. Forced alignment for Pause Durations
Given a word-level transcript, a process called “forced align-
ment” can be used [9]. Forced alignment uses an existing
ASR system, and constrains it so that it can only recognize
the (known) word sequence. The output contains the loca-
tion in the speech signal of each word and pause event. The
forced alignment system developed at OHSU is state-of-the-
art, placing 92.6% of phonemes boundaries within 20 mil-
liseconds of manual boundaries on the TIMIT corpus.3

3. RESULTS

Table 3 shows group means and standard deviations of a se-
lection of spoken language markers derived from the Logical
Memory I/II retellings, both manually and automatically ex-
tracted. Of the two reported syntactic complexity markers,
Words per clause and the Yngve score per word, both were
statistically significantly different between the groups for the
delayed test (Logical Memory II), though the Yngve score
for Logical Memory I was not statistically significantly dif-
ferent between the two groups. These differences held for
both manual and automatic marker extraction. In contrast,
of the speech duration based markers – Verbal rate, Phona-
tion rate, Mean pause duration and Standardized pause rate –
only Standardized pause rate for Logical Memory I showed
a significant difference when manually extracted. This sta-
tistical significance was not maintained when automatically
extracted, despite the maintenance of relatively large differ-
ences between the groups.

4. DISCUSSION

There are several points that can be made from the presented
results. First, we have strong evidence that automated ex-
traction of these markers can be effective, given the preser-

3Boundary agreement between two humans on the TIMIT cor-
pus is 93.5% within 20 milliseconds.



Logical Memory I Logical Memory II
CDR = 0 CDR = 0.5 CDR = 0 CDR = 0.5

Measure M SD M SD t(35) M SD M SD t(35)
Total words in retelling 74.9 34.0 60.7 35.7 1.22 80.3 33.3 59.7 35.9 1.79

Manually extracted: Words per clause 6.53 1.23 5.31 1.21 2.98** 6.58 1.02 4.86 1.79 3.72***

Yngve score per word 1.42 0.22 1.41 0.22 0.15 1.54 0.28 1.25 0.46 2.35*

Verbal rate 1.39 0.47 1.34 0.41 0.37 1.75 0.62 1.75 0.70 0.04
Phonation rate 0.48 0.13 0.46 0.08 0.64 0.57 0.12 0.56 0.21 0.25

Mean pause duration 4.40 1.39 3.53 1.41 1.85 3.44 1.56 2.67 1.37 1.55
Standardized pause rate 12.29 6.09 8.32 3.44 2.28* 15.75 18.04 11.35 6.91 0.90

Auto extracted: Words per clause 6.54 1.44 5.13 1.07 3.22** 6.54 1.25 4.98 1.97 2.94**

Yngve score per word 1.35 0.21 1.30 0.22 0.66 1.48 0.25 1.19 0.45 2.44*

Verbal rate 1.43 0.49 1.38 0.38 0.34 1.79 0.64 1.83 0.81 −0.19
Phonation rate 0.36 0.12 0.36 0.06 0.23 0.43 0.11 0.45 0.20 −0.44

Mean pause duration 4.17 0.85 3.59 1.12 1.79 3.80 1.29 3.32 2.78 0.71
Standardized pause rate 10.16 6.07 7.34 1.74 1.74 13.20 10.36 11.43 13.17 0.46

Table 3. Manual and automatic spoken language marker results for subjects. *** p < 0.001; ** p < 0.01 ; * p < 0.05

vation of significant group differences for all but one marker,
and the overall small changes in the automated group means
compared to manual extraction. Second, several spoken lan-
guage derived markers do appear to have discriminative util-
ity when extracted from these narrative recall tests, though
only one of the speech duration based markers showed sig-
nificant group differences on this small data set.

Interestingly, syntactic complexity differences were
larger in the delayed retelling, versus larger pause based
differences in the immediate retelling. The combination of
such markers should ultimately result in composite markers
of even higher utility, though more data will be required to
investigate this. Also, improved forced alignment models,
obtained via, e.g., speaker-dependent adaptation, should im-
prove the utility of automated pause based markers.

In summary, we have presented preliminary results of
the utility of spoken language markers derived automati-
cally from transcribed audio of neuropsychological exams.
Though the size of the data set was small, we found statisti-
cally significant differences in a number of spoken language
derived markers. We were able to extract these markers auto-
matically sufficiently accurately to retain group differences.
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