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Abstract—Spoken responses produced by subjects during neu-
ropsychological exams can provide diagnostic markers beyond
exam performance. In particular, characteristics of the spoken lan-
guage itself can discriminate between subject groups. We present
results on the utility of such markers in discriminating between
healthy elderly subjects and subjects with mild cognitive impair-
ment (MCI). Given the audio and transcript of a spoken narrative
recall task, a range of markers are automatically derived. These
markers include speech features such as pause frequency and
duration, and many linguistic complexity measures. We examine
measures calculated from manually annotated time alignments (of
the transcript with the audio) and syntactic parse trees, as well as the
same measures calculated from automatic (forced) time alignments
and automatic parses. We show statistically significant differences
between clinical subject groups for a number of measures. These
differences are largely preserved with automation. We then present
classification results, and demonstrate a statistically significant
improvement in the area under the ROC curve (AUC) when using
automatic spoken language derived features in addition to the neu-
ropsychological test scores. Our results indicate that using multiple,
complementary measures can aid in automatic detection of MCI.

Index Terms—Forced alignment, linguistic complexity, mild
cognitive impairment (MCI), parsing, spoken language under-
standing.

I. INTRODUCTION

ATURAL language processing (NLP) techniques are
often applied to electronic health records and other
clinical datasets to assist in extracting information from un-
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structured text. Recent research has examined a potential
alternative clinical use of NLP for processing patient language
samples to assess language development [3], [4] or the impact
of neurodegenerative impairments on speech and language [1].
In this paper, we present methods for automatically measuring
speech characteristics and linguistic complexity of spoken
language samples elicited during neuropsychological exams of
elderly subjects, and examine the utility of these measures for
discriminating between clinically defined groups.

Among the most important clinical research advances in brain
aging in recent years has been a sharpening of focus to the ear-
liest clinically detectable phases of incipient dementia, com-
monly known as mild cognitive impairment (MCI) [5]. It has
been rapidly appreciated that “MCI” is a clinical syndrome that
is heterogeneous in its presentation [6] as well as in its out-
comes [7], [8]. It has been shown that some people will reli-
ably progress from MCI to dementia while others remain stable
for years [8], [9]. A minority return to normal cognitive func-
tion. The degree to which these variations are the result of dif-
ferences in definitions (e.g., single domain versus multi-domain
MCI), populations or assessment methods are active and critical
areas of investigation [10]. They speak to the need for multiple
standardized approaches to these key studies. For the current
study, we use the Clinical Dementia Rating (CDR [11], defined
in Section II-A) to identify individuals with MCI. The CDR is
assigned independently of the psychometric battery of exams
investigated in this paper, and hence (importantly) provides an
externally defined reference objective for evaluation.

MCI often goes undiagnosed. Clinicians in typical primary
care practices find recognizing cognitive impairment at any
stage challenging, failing to recognize or evaluate up to 50% of
even later stage dementia [12]. Further, widely used screening
tests such as the Mini-Mental State Examination (MMSE) do
not reliably detect the relatively subtle impairment present in
early MCI. Linguistic memory tests, such as word list and
narrative recall, are more effective than the MMSE in detecting
MCI, yet are still individually insufficient for adequate dis-
crimination between healthy and impaired subjects. Because
of this, a battery of examinations is typically used to improve
psychometric classification. Yet the summary recall scores
derived from these linguistic memory tests (total story units
correctly recalled) disregard potentially useful information in
the characteristics of the spoken language itself.

Previous work on the relationship between Alzheimer’s dis-
ease and linguistic complexity demonstrates that low linguistic
ability in early life has a strong association with cognitive
impairment and Alzheimer’s disease in later life [13]. In this
paper, we examine a number of linguistic complexity measures
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[14], [15] and pause statistics [16] to find early markers of
Alzheimer’s in later life. Measures derived from characteristics
of the spoken language go beyond simply measuring fidelity
to the narrative, thus providing key additional dimensions for
improved diagnosis of impairment. These may be analyzed for
many characteristics of speech and language that the papers
cited above have shown to discriminate between healthy sub-
jects and subjects with impairment.

The key contributions of this work are threefold. First, we
examine a large set of spoken language measures derived from
clinically elicited samples, and demonstrate that they can be
useful for discriminating between healthy and MCI groups.
Second, we demonstrate the utility of these measures for a much
older group of subjects than has been shown in the previous lit-
erature, with average age near 90. Finally, we demonstrate that
effective automation of measure extraction is possible when
given transcript and audio, so that significant differences in
feature means between healthy and MCI groups are preserved.
These automatically derived features are shown to provide
statistically significant improvements in classification between
healthy and MCI groups over the test scores alone. This paper
extends results from two earlier conference publications [1],
[2] by including a substantially larger set of subjects in the
study—Ilarge enough to perform full classification trials—and
by expanding the set of features that we investigate for this ap-
plication. Overall, the results presented here are very promising
for the use of automatically derived spoken language measures
to augment the diagnostic utility of linguistic memory tests.

Working with samples taken from neuropsychological tests
has several key benefits. First, methods will have direct clinical
applicability, because they will apply to standard tests that are
already in use in clinical settings. Second, to the extent that ad-
ditional discriminative utility can be derived from the output of
any particular neuropsychological test, the number of tests re-
quired for reliable screening will be reduced, leading to a better
chance of widespread testing due to reduced demands on both
clinicians and patients. Finally, the relatively constrained elicita-
tion, focused on a fixed narrative, makes automation of marker
extraction particularly feasible. The narrow and topic-focused
use of language allows automatic extraction to be much more
accurate for a large volume of subjects.

Most previous work on spoken language samples with such
a population has focused on spontaneous conversational speech
[14]-[16], leading to questions about whether the same useful
characteristics derived in the previous work would be present
in the clinically elicited samples. The narrow topic focus and
formal setting that lead us to expect easier automation may
also lead us to expect less variation among subjects. As we
shall demonstrate, however, the relative ease of automation
does not come at the expense of the utility of the spoken lan-
guage markers: there remain enough differences in the spoken
language to provide markers of good discriminative utility.

Additionally, the above cited works have focused on elderly
subjects, but with mean ages in the 60s to mid 70s, hence
yielding little evidence of whether such spoken language
measures will be of utility for subjects beyond the age of 80.
With increases in life expectancy, this is a growing segment of
the population, and one where the risk of MCI and dementia
are at their highest. With substantial changes in speech and
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language associated with typical aging, it is a real question as
to whether measures which have been shown to discriminate
between healthy subjects and subjects with MCI or dementia
will continue to discriminate at more advanced ages. As we
show in this paper, differences in spoken language do provide
markers of good discriminative utility for subjects well above
the age of 80. Due to all of these considerations, we believe
that use of spoken language markers to diagnose MCI is a
compelling area for further research.

For many measures of speech characteristics and linguistic
complexity, the nature of the annotation is critical—different
conventions of structural or temporal annotation will likely yield
different scores. We will thus spend the next section briefly de-
tailing the annotation conventions that were used for this work.
This is followed by a section describing measures to be derived
from these annotations. Finally, we present empirical results on
the samples of spoken narrative retellings.

II. DATA AND ANNOTATION CONVENTIONS

A. Subjects

The subjects in this study came from existing community co-
hort studies of brain aging at the Layton Aging & Alzheimer’s
Disease Center, an NIA-funded Alzheimer’s center for research
at Oregon Health & Science University (OHSU). The Layton
Center defines MCI in two ways: 1) via the Clinical Dementia
Rating (CDR) scale [11] and 2) via a psychometrically driven
concept of degraded performance on a large set of neuropsycho-
logical tests. This paper is investigating speech produced during
the neuropsychological tests that play a role in the latter defi-
nition of MCI. Thus, to provide an independent unconfounded
reference objective for evaluation, our reference classification
is based on the CDR scale, defined next. The CDR has been
shown to have high expert inter-annotator reliability [17], and,
critically, is not deterministically derived from neuropsycholog-
ical test results.

The CDR is assigned with access to information from clin-
ical examinations, and is calculated by assigning scores for
six cognitive categories: Memory; Orientation; Judgment and
Problem Solving; Community Affairs; Home and Hobbies; and
Personal Care. The score for each category is an assessment of
impairment in that category, and can take one of five values:
0 (None); 0.5 (Questionable); 1 (Mild); 2 (Moderate); and 3
(Severe). The information that is used to provide the scores in
each of these categories comes from clinical interviews with
the subject and an informant, and a clinician-administered
Neurobehavioral Cognitive Status Examination. To derive the
CDR from these independently scored categories, the score
M of the Memory category is taken as primary. The CDR is
M if at least three of the remaining five categories also have
a score of M. Otherwise, the CDR is calculated by looking at
the scores of categories with score other than M. See [11] for
specific details.

We collected audio recordings of 74 neuropsychological ex-
aminations administered at the Layton Center at OHSU. The
two subject groups were: 1) those who were assigned a Clinical
Dementia Rating (CDR) of 0 (healthy); and 2) those who were
assigned a CDR of 0.5 (Mild Cognitive Impairment; MCI). 37
subjects were in the CDR = 0 group (healthy); and 37 subjects
are in the CDR = 0.5 group (MCI).
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TABLE I
NEUROPSYCHOLOGICAL TEST RESULTS FOR SUBJECTS.
***p < 0.001;**p < 0.01;*p < 0.05

CDR =0 CDR = 0.5
Test (n=37) (n=37)

ID  Measure M SD | M SD t(72)
Age 888 6.0 | 89.8 57 —0.77
Education (Y) 15.1 2.4 14.5 2.8 0.95

1 MMSE 28.2 1.7 | 26.4 2.4 3.64%**
2 Word List (A) 195 42 15.8 3.6 4.04***
3 Word List (R) 64 2.1 4.1 2.1 4.65***
4 Wechsler LM 1 159 45 | 118 45 3.96***
5 Wechsler LM 11 144 48 10.1 4.8 3.51%**
6 Cat.Fluency (A) 17.8 4.5 | 140 4.1 3.78***
7 Cat.Fluency (V) 124 40 98 34 2.97**
8 Digits (F) 6.8 1.2 6.3 1.2 1.83*

9 Digits (B) 4.8 1.1 4.3 1.0 2.07*

B. Neuropsychological Tests

Table I presents means and standard deviations for age, years
of education and the manually calculated scores of a number
of standard neuropsychological tests that were administered
during the recorded session. Again, these tests are not used to
assign the CDR. These tests include: the Mini Mental State
Examination (MMSE) [18]; the CERAD Word List Acquisition
(A) and Recall (R) tests [19]; the Wechsler Logical Memory
(LM) I (immediate) and II (delayed) narrative recall tests [20];
Category Fluency, Animals (A) and Vegetables (V); and Digit
Span (WAIS-R) forward (F) and backward (B) [21]. Test IDs
are given in the table for reference later in the paper.

The Wechsler Logical Memory I/II tests are the basis of our
study on spoken language derived measures. The original nar-
rative is a short, three-sentence story:

Anna Thompson of South Boston, employed as a cook in
a school cafeteria, reported at the police station that she had
been held up on State Street the night before and robbed
of fifty-six dollars. She had four small children, the rent
was due, and they had not eaten for two days. The police,
touched by the woman’s story, took up a collection for her.

Subjects are asked to re-tell this story immediately after it is told
to them (LM 1), as well as after approximately 30 minutes of un-
related activities (LM II). Each retelling is scored by assigning
a point for 25 possible “story units,” as defined in the scoring
guidelines of the test. For example, using the word “cook” earns
a point for one story unit; also the words “Thompson,” “Boston,”
“school,” “cafeteria,” and “police” each count as story units,
along with many other words and phrases, covering the entire
short narrative. A subject’s score for both the immediate and
delayed retelling is the sum total of recalled story units for that
retelling, as tallied by the examiner.

We transcribed each retelling and manually time-aligned the
transcripts with the audio (see Section II-E). We also manually
annotated syntactic parse trees according to the Penn Treebank
annotation guidelines (see Section II-D). Algorithms for cal-
culating linguistic complexity measures from parse trees were
written to accept either manually annotated trees or trees output
from an automatic parser. Similarly, algorithms for calculating
speech measures, such as pause frequency and duration, were
written to accept either manual or automatic time alignments.
This is useful for a comparison of feature extraction from auto-
matic and manual annotations.
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C. Manual Transcriptions

Conversational speech and other types of spontaneous lan-
guage do not tend to occur in clearly defined sentences. We
followed the utterance segmentation rules outlined in the 2004
EARS Official Annotation Guidelines [22] for conversational
speech, such as that found in the Switchboard corpus [23]. These
guidelines differ substantially from the original Switchboard
treebank guidelines from the 1999 release, which relied heavily
on speech stream characteristics and imposed a 15-s cutoff for
utterances. The 2004 guidelines were used for the most current
LDC release of the Switchboard treebank. Briefly, utterances are
separated based on whether 1) they contain a subject and a pred-
icate, or 2) if they have no subject, they contain a predicate that
is not coordinated with the previous predicate. The exception to
this is embedded clauses, which were included within their ma-
trix clauses.

In some cases, the speech was too fragmented to make such
clear-cut distinctions. In these cases, we separated out each frag-
ment if it did not clearly belong to the previous or following ut-
terance. This was determined both by the semantic content of
the utterances and whether there was a pause (>1 s) between
the fragment and the surrounding speech. All transcription work
was completed by one author, ensuring consistency across the
different transcriptions.

For manual time-alignment of the transcript with the audio,
we marked the start and end points of each word and pause in
the speech stream. Manual transcriptions were also annotated
to mark reparandums, a sequence of words that are aborted by
the speaker then repaired within the same utterance; and par-
entheticals, an utterance within a narrative that is not part of
the narrative itself. Parentheticals longer than one full utterance
were considered to be outside of the narrative recall, and were
not included in our analyses. We discuss these cases in further
detail below. Additionally, we isolated only the narrative recall
itself; conversational speech that occurred immediately before
and immediately after the recall was disregarded.

D. Syntactic Annotation

For manual syntactic annotation of collected data, we fol-
lowed the syntactic annotation conventions of the Penn Tree-
bank [24]. This provides several key benefits. First, there is an
extensive annotation guide that has been developed, not just for
written but also for spoken language, so that consistent anno-
tation was facilitated. Second, large out-of-domain corpora, in
particular the 1 million words of syntactically annotated Switch-
board telephone conversations, provide a good starting point for
training domain-adapted parsing models. Finally, we can use
multiple domains for evaluating the correlations between var-
ious linguistic complexity measures.

There are characteristics of Penn Treebank annotation that
can impact linguistic complexity scoring. First, prenominal
modifiers are typically grouped in a flat constituent with no
internal structure. This annotation choice can result in very long
noun phrases (NPs) which pose very little difficulty in terms
of human processing performance, but can inflate complexity
measures that measure deviation from right-branching struc-
tures, such as that of Yngve [25], described in Section III-B.
Second, in spoken language annotations, a reparandum is
denoted with a special non-terminal category EDITED; and
parentheticals are denoted with a special non-terminal category
PRN. For this paper, these are treated as constituents.
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E. Pause Annotations From Time Alignments

Given time alignments marking the start and end points of
each word and pause in the speech stream, we can calculate
pause measures. Background noises and non-speech sounds
(coughing, tongue-clicks, etc.), were not marked, and were gen-
erally subsumed within the pause time-alignments. Interjections,
suchas “um,” “uh,” and “hmm,” were transcribed; however, these
were analyzed as filled pauses and so added to the total pause
count and pause time. All pauses in the narrative recall greater
than one second were included within our pause statistics.

Crosstalk between the interviewer and the subject occurred
rarely, but in these cases we transcribed the subject only. This
was also best for recognition purposes, as the subject was
loudest in the speech stream due to microphone placement.
Speech produced by the interviewer alone was marked as
such, and not included in our analyses. These interjections are
minimal, making up 1.06% of the time in our data. They consist
of sounds of agreement (“mm-hmm,” “yeah”) and a reprompt
(“Are there any other details you can think of?”).

III. SPOKEN LANGUAGE DERIVED MEASURES

A. Approaches to Linguistic Complexity

There is no single agreed-upon measurement of linguistic
complexity in the literature. A range of measures have been pro-
posed, with different primary considerations driving the notion
of complexity for each. Many measures focus on the order in
which various constructions are acquired by children learning
the syntax of their native language—later acquisitions being
taken as higher complexity. Examples of this sort of complexity
measure are: mean length of utterance (MLU), which is typ-
ically measured in morphemes [26]; the Index of Productive
Syntax [27], a multi-point scale which has recently been auto-
mated for child-language transcript analysis [3]; and Develop-
mental Level [28], a 7-point scale of complexity based on the
presence of specific grammatical constructions.

For assessing adult language—the focus of the current
study—approaches have relied upon the right-branching na-
ture of English syntactic trees [25], [29], under the assumption
that deviations from that correspond to more complexity in the
language. Additionally, there are approaches focused on the
memory demands imposed by “distance” between dependent
words [30], [31]. We next discuss in detail the particular lin-
guistic complexity measures we employed in the study presented
here, followed by other spoken language derived measures.

B. Yngve Scoring

The scoring approach taken in Yngve [25] is related to the
size of a “first in/last out” (pushdown) stack at each word in a
top-down, left-to-right parse derivation. To calculate the size of
the stack at each word, we can use the following simple algo-
rithm. At each node in the tree, score the branches from that
node to each of its children, beginning with a score of zero at
the rightmost child and continuing to the leftmost child, incre-
menting the score by one for each child. Hence, each rightmost
branch in the tree of Fig. 1 (solid lines) is labeled with 0, the
leftmost branch in all binary nodes is labeled with 1, and the
leftmost branch in the ternary node is labeled with 2. Then the
score for each word is the sum of the branch scores from the
root of the tree to the word.
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PRP AUX bT NN IN \DT NN NN

she was a cook in a school cafeteria
Y1 1 2 1 1 2 1 0
F: 25 1 2 0 1 1 0 0

Fig. 1. Parse tree with branch scores for Yngve scoring, and upward link scores
(on dotted lines) for Frazier scoring. The Yngve score (Y) and Frazier score (F)
is shown for each word.

Given the score for each word, we can then derive an overall
complexity score by summing them or taking the maximum or
mean. For this paper, we report mean scores for this and other
word-based measures, since we have found these means to pro-
vide better performing scores than either total sum or maximum.
For the tree in Fig. 1, the maximum is 2, the total is 9 and the
mean over 8 words is 1(1/8).

C. Frazier Scoring

Frazier [29] proposed an approach to scoring linguistic com-
plexity that traces a path from a word up the tree until reaching
either the root of the tree or the lowest node that is not the leftmost
child of its parent (i.e., finding a sibling to its left).! For example,
the tree in Fig. 1 is augmented with dotted arcs that trace a path
from words up to the node specified by Frazier’s approach. The
first word has a path up to the root S node, while the second word
just up to the VP, since the VP has an NP sibling to its left. The
word is then scored, as in the Yngve measure, by summing the
scores on the links along the path. Each non-terminal node in the
path contributes a score of 1, except for sentence nodes and sen-
tence-complement nodes,? which score 1.5 rather than 1. Thus,
embedded clauses contribute more to the complexity measure
than other embedded categories, as an explicit acknowledgment
of sentence embeddings as a source of linguistic complexity.

As with the Yngve score, we can calculate the total and the
mean of these word scores. For the example in Fig. 1, the max-
imum is 2.5 and the total is 7.5, yielding a mean of (15/16).

D. Dependency Distance

Rather than examining the tree structure itself, one might also
extract measures from lexical dependency structures. These de-
pendencies can be derived from the tree using standard rules for
establishing head children for constituents, originally attributed
to Magerman [32], to percolate lexical heads up the tree. Fig. 2
shows the dependency graph that results from this head perco-
lation approach, where each link in the graph represents a de-
pendency relation from the modifier to the head. For example,
conventional head percolation rules specify the VP as the head
of the S, so “was,” as the head of the VP, is thus the lexical head
of the entire sentence. The lexical heads of the other children of

An exception is made for empty subject NPs, in which case the succeeding
verb receives an additional score of 1 (for the deleted NP), and its path continues
up the tree.

2Every non-terminal node beginning with an S, including SQ and SINV, were
counted as sentence nodes. Sequences of sentence nodes, i.e., an SBAR ap-
pearing directly under an S node, were only counted as a single sentence node
and thus only contributed to the score once.
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she was a cook in a  school cafeteria

Fig. 2. Dependency graph for the example string.

the S node are called modifiers of the head of the S node; thus,
since “she” is the head of the subject NP, there is a dependency
relation between “she” and “was.”

Lin [30] argued for the use of this sort of dependency struc-
ture to measure the difficulty in processing, given the memory
overhead of very long distance dependencies. Both Lin [30] and
Gibson [31] showed that human performance on sentence pro-
cessing tasks could be predicted with measures of this sort. While
details may differ—e.g., how to measure distance, what counts as
a dependency—we can make use of the general approach given
Treebank style parses and head percolation, resulting in graphs
of the sort in Fig. 2. For the current paper, we count the distance
between words for each dependency link. For Fig. 2, there are 7
dependency links, a distance total of 11, and a mean of 1(4/7).

E. POS-Tag Sequence Cross Entropy

One possible approach for detecting rich syntactic struc-
ture is to look for infrequent or surprising combinations of
parts-of-speech (POS). We can measure this over an utterance
by building a simple bi-gram model over POS tags, then mea-
suring the cross entropy of each utterance.3

Given a bi-gram model over POS-tags, we can calculate the
probability of the sequence as a whole. Let 7; be the POS-tag of
word w; in a sequence of words ws . .. w,, and assume that 7
is a special start symbol, and that 7,1 is a special stop symbol.
Then the probability of the POS-tag sequence is

n+1

P(ry...m) = [[P(mi | 7ic1). (1)
=1

The cross entropy is then calculated as
1
H(ry...7) = ——1logP(m ... 7). 2)
n

With this formulation, this boils down to the mean negative log
probability of each tag given the previous tag. For this study, we
derive POS-tags from the output of parsing.

We examine POS-tag cross entropy in two conditions, calcu-
lated using models derived just from the Switchboard treebank
as well as models adapted to this domain. The details of domain
adaptation are discussed in further detail in Section IV-A.

F. Alternative Tree Analyses

For the tree-based complexity metrics (Frazier and Yngve),
we also investigated alternative implementations that make
use of systematic transformations of the tree structure. None
of these yielded much difference in our analysis versus the
standard trees, but we mention them here for completeness.

One alternative was the left-corner transformation [33] of the
tree from which the measures were calculated. In Roark et al.
[2], we presented results using either manually annotated trees
or automatic parses to calculate the Yngve and Frazier measures
after a left-corner transform had been applied to the tree. The
patterns were very similar to those achieved without the trans-
form; hence, the results are omitted in this paper.

3For each test domain, we used cross-validation techniques to build POS-tag
bi-gram models and evaluate with them in that domain.
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We also calculated the Frazier and Yngve measures using
only the embedded nodes within each tree, as a way to examine
the effects of center-embedding, but this did not yield measures
that showed statistically significant group differences; hence,
the raw results are omitted in this paper.

Finally, we looked at the effects of removing disfluencies
(EDITED nodes in the trees) and parentheticals (PRN). These
did yield some interesting differences from the original trials.
In particular, when removing these constituents, words per
retelling shows statistically significant group differences in
both the immediate and delayed retelling conditions, which
is not the case when they are left in. Also, POS-tag cross
entropy shows statistically significant group differences in all
conditions using either domain-adapted models or non-adapted
models. Only domain-adapted models yield statistically signif-
icant group differences using the standard structures. There are
other minor differences, but not enough to warrant a detailed
examination of this transform in this paper.

G. Idea Density

Another way to measure the complexity of a sentence using
POS-tags is to look at the number of propositions expressed
in the sentence. This is the metric of idea density (also known
as propositional density or P-density) [13], which is defined as
the number of expressed propositions divided by the number
of words. This provides a way to measure how many asser-
tions a speaker is making. In this metric, propositions corre-
spond to verbs, adjectives, adverbs, prepositions, and conjunc-
tions. Nouns are not considered to be propositions, as the main
verb and all its arguments count as one proposition. Calcula-
tion of P-density was performed using a modified version of the
rules outlined in the Computerized Propositional Idea Density
Rater (CPIDR) program [34], adapted to the POS-tags used in
the Penn Treebank.

H. Content Density

A related measure that we explored is the ratio of open-class
words to closed-class words, which we term content density.
An open word class is one in which an unlimited number of
new words may be added and created, such as nouns and verbs;
while closed word classes are fixed (relatively small) sets, such
as prepositions. This is also stated as the distinction between
content words and function words.

This metric is comparable to the P-density (idea density)
metric, except that nouns are counted in addition to verbs.
Content density is calculated over POS-tags, where open-class
words are those with POS-tags corresponding to nouns, verbs,
adjectives, adverbs, and symbols, i.e., those POS-tags begin-
ning with NN, VB, JJ, RB, or SYM. The rest are considered
closed-class words.4

1. Speech Duration Measures

In addition to measures derived from the syntactic structure
of the utterances in the retelling, we derived measures from
temporal aspects of the speech sample, such as number of
pauses and total pause duration. We follow Singh ef al. [16] in
setting a 1-second minimum for counting silence as pause, and
we also employ their definitions of the following speech-based

“Interjections are technically an open class, but for our purposes, we group
interjection tags with other non-content tags.
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TABLE II
PARSER ACCURACY ON WECHSLER LOGICAL MEMORY RESPONSES USING
JUST OUT-OF-DOMAIN DATA (SWITCHBOARD (SWBD) TREEBANK) VERSUS
USING A DOMAIN-ADAPTED SYSTEM

Labeled | Labeled
System Recall Precision | F-measure
Out-of-domain (SWBD) 83.2 86.4 84.8
Domain-adapted from SWBD 87.7 89.0 88.3

measures. For these, words or phrases marked as EDITED
(reparandum) or PRN (parenthetical comments) were included
as standard words in the retelling. However, a set of pre-defined
“filler” words were considered to be pause events instead of
standard words. The list of filler words was {um, uh, er, eh, hm,
huh, duh}. Speech measures included the following:
e The Pauses per Retelling measure is the total number of
pauses per sample.
e The Total Pause Time is the total duration of all pauses
(minimum 1-second duration) per sample, in seconds.
e The Mean Duration of Pauses is the Total Pause Time
divided by the Pauses per Retelling.
¢ The Standardized Pause Rate is the number of words in
the sample divided by the Pauses per Retelling.
¢ The Total Phonation Time is the amount of time, in sec-
onds, in the sample that contains speech events.
¢ The Total Locution Time is the amount of time in the
sample that contains both speech and pauses.
* The Phonation Rate is the Total Phonation Time divided
by the Total Locution Time.
¢ The Transformed Phonation Rate is the arcsine of the
square root of the Phonation Rate. According to Singh et
al., “This transformation provides a normally distributed
measure within each participant group” [16].
e The Standardized Phonation Time is the number of
words in the sample divided by the Total Phonation Time.
e The Verbal Rate is the number of words in the sample
divided by the Total Locution Time.

IV. EXPERIMENTAL RESULTS

A. Parsing

For automatic parsing, we made use of the Charniak parser
[35]. In this section, in order to evaluate parsing results under
standard conditions, we present parse accuracy evaluation
with the EDITED nodes removed [36], though later results in
Section IV-D and IV-E do not remove these nodes. Table II
shows parsing accuracy> of our annotated retellings under two
parsing model training conditions: 1) trained on approximately
1 million words of Switchboard (SWBD) corpus telephone con-
versations; and 2) using domain adaptation techniques starting
from the SWBD Treebank. The SWBD out-of-domain system
reaches quite respectable accuracies, and domain adaptation
achieves a 3.5% absolute improvement over that.

For domain adaptation, we used MAP adaptation techniques
[38] via cross-validation over the entire set of retellings. For

SWe use the standard PARSEVAL measures [37] for evaluation of parse accu-
racy: labeled precision is the number of correct labeled spans divided by labeled
spans in the automatic parse; labeled recall is the number of correct labeled spans
divided by labeled spans in the true parse; and F-measure is the harmonic mean
of these two scores.
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TABLE III
CORRELATION MATRICES FOR SEVERAL MEASURES ON AN
UTTERANCE-BY-UTTERANCE BASIS. CORRELATIONS ALONG THE DIAGONAL
ARE BETWEEN THE MANUAL MEASURES AND THE MEASURES WHEN
AUTOMATICALLY PARSED. ALL OTHER CORRELATIONS ARE BETWEEN
MEASURES WHEN DERIVED FROM MANUAL PARSE TREES

Penn WSJ Frazier | Yngve [ Tree nodes [ Dep len
Frazier 0.89

Yngve -0.31 0.96

Tree nodes 0.91 -0.16 0.92
Dependency length -0.29 0.75 -0.13 0.93
Penn SWBD

Frazier 0.96

Yngve -0.72 0.96

Tree nodes 0.58 -0.06 0.93
Dependency length -0.74 0.97 -0.08 0.96
Wechsler LM

Frazier 0.87

Yngve -0.40 0.93

Tree nodes 0.99 -0.43 0.87
Dependency length -0.43 0.95 -0.47 0.94

each subject, we trained a model using the SWBD treebank as
the out-of-domain training data, and the retellings of the other 73
subjects as in-domain training. For our parser, we used a count
merging approach, with the in-domain counts scaled by 1000
relative to the out-of-domain counts. See Bacchiani ef al. [38]
for more information on stochastic grammar adaptation using
these techniques.

B. Correlations

Our next set of experimental results present correlations
between parse-tree derived measures. Table III shows results
for four of our measures over both treebanks that we have been
considering (Penn SWBD Treebank, and the Wechsler LM
retellings) as well as for the Penn WSJ Treebank as a compar-
ison point. The correlations along the diagonal are between
the same measure when calculated from manually annotated
trees and when calculated from automatic parses.® All other
correlations are between measures derived from manual trees.
All correlations are taken per utterance.

From this table, we can see that all of the measures derived
from automatic parses have a high correlation with the man-
ually derived measures, indicating that they may preserve any
discriminative utility of these measures. Interestingly, simply
calculating the number of nodes in the tree per word tends to cor-
relate well with the Frazier score, while the dependency length
tends to correlate well with the Yngve score. These two groups
of syntactic measures seem to roughly correspond to those mea-
suring depth of the tree (Frazier, tree nodes) versus those mea-
suring the breadth of the tree (Yngve, dependency length). No-
tably, there seems to be a slightly lower correlation between
manual and automatic annotations for the depth measures than
for the breadth measures.

C. Forced Alignment for Pause Durations

Forced alignment uses an existing automatic speech recog-
nition (ASR) system, and constrains it so that it can only rec-
ognize the (known) word sequence, with optional pauses be-

6SWBD and WSJ automatic parses are trained from same-domain data, using
standard training and development sets; for the Wechsler LM retellings, we used
the parsing model adapted from out-of-domain SWBD data.
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LANGUAGE AND SPEECH MEASURE GROUP DIFFERENCES WHEN MEASURES ARE DERIVED FROM EITHER

TABLE IV

MANUAL OR AUTOMATIC ANNOTATIONS. ***p < 0.001; **p < 0.01; *p < 0.05

Logical Memory I Logical Memory I1
Feature CDR=0 CDR=0.5 CDR=0 CDR=0.5
1D Measure mean SD mean SD 172) mean SD mean SD 1(72)
1 Words per retell 69.22  23.01 64.22  28.25 0.83 70.43 2883 | 61.03 3191 1.33
2 Utter. per retell 8.41 3.08 8.70 430 -0.33 8.03 3.59 7.54 4.10  0.55
3 Words per utter. 8.72 2.60 7.91 3.57 1.12 9.28 3.01 8.09 4.14 1.41
Language Measures
Words per clause 6.20 1.48 547 1.53 2.09% 6.49 1.29 5.17 1.87 3.53%%%
Automated: 6.23 1.58 5.25 1.34  2.88%* 6.34 1.29 5.15 1.79 3.28% %
5 Frazier per word 1.07 0.10 1.10 0.11  -1.23 1.05 0.07 1.05 0.27 0.00
Automated: 1.05 0.08 1.08 0.09 -1.52 1.03 0.08 1.02 026 022
6 Tree Nodes per word 2.00 0.09 2.03 0.10 -1.36 1.98 0.07 1.93 0.47 0.64
Automated: 1.98 0.08 2.01 0.09 -1.52 1.96 0.07 1.90 0.47 0.77
7 Yngve per word 1.49 0.27 1.48 042  0.12 1.57 0.26 1.38 049  2.08*%
Automated: 1.41 0.22 1.39 030 0.33 1.54 0.29 1.32 0.47 2.42%*
8 Depend Len per word 1.57 0.29 1.55 0.41 0.24 1.66 0.28 1.47 0.48 2.08%*
Automated: 1.50 0.22 1.49 034  0.15 1.65 0.32 1.43 0.47 2.35%
9 POS cross entropy (LM) 2.09 0.24 2.00 0.22 1.68% 2.10 0.25 1.96 0.54 1.43
Automated: 2.11 0.23 2.02 0.20 1.80* 2.12 0.24 1.98 0.53 1.46
10 POS cross entropy (SW) 2.06 0.20 2.00 0.19 1.32 2.08 0.21 1.94 0.51 1.54
Automated: 2.07 0.20 2.01 0.17 1.39 2.08 0.20 1.94 0.51 1.55
11 P-Density per word 0.40 0.07 0.41 0.09 -0.53 0.44 0.07 0.43 0.13 0.41
Automated: 0.40 0.07 0.40 0.09 0.00 0.43 0.07 0.43 0.13 0.00
12 Content Density 1.07 0.27 0.90 030  2.56%F 1.03 0.30 0.88 0.32 2.08%
Automated: 1.04 0.27 0.87 030  2.56%* 1.01 0.29 0.84 0.32  2.39%
Speech Measures
13 Pauses per retell 8.86 573 9.65 465 -0.65 7.46 4.62 6.84 478 0.57
Automated: 9.30 5.64 | 10.05 5.03  -0.60 7.92 5.18 7.08 529  0.69
14 Total Pause Time || 21.46 21.81 | 18.69 12.51 0.67 1191 1039 | 11.67 11.78  0.09
Automated: 18.66 17.36 18.29 12.24 0.11 11.56 9.71 11.60 11.78  -0.02
15 Mean Pause Duration 2.04 1.38 1.86 0.78 0.69 1.41 0.88 1.41 0.91 0.00
Automated: 1.80 0.94 1.76 0.73 0.20 1.32 0.80 1.35 0.78 -0.16
16 Standardized Pause Rate 10.72  10.03 7.21 3.70 2.00% 13.62 1294 9.66 6.97 1.64
Automated: 10.93 9.49 7.50 5.46 1.91% 12.08 10.18 9.76 7.40 1.12
17 Total Phonation Time 24.20 9.49 | 20.55 8.43 1.75% 24.04 9.35 19.05 10.68 2.14%
Automated: || 23.86 11.64 | 20.23 8.68 1.52 22.37 8.49 | 1849 10.64 1.73%
18 Phonation Rate 0.62 0.21 0.56 0.15 1.41 0.72 0.18 0.65 0.23 1.46
Automated: 0.63 0.18 0.55 0.15 2.08* 0.71 0.17 0.64 0.23 1.49
19 Transformed Phonation Rate 0.93 0.25 0.85 0.16 1.64 1.04 0.23 0.94 0.31 1.58
Automated: 0.93 0.20 0.85 0.17 1.85% 1.03 0.23 0.94 0.32 1.39
20 Standardized Phonation Time 2.98 0.61 3.01 058 -0.22 3.06 0.67 3.02 0.88 0.22
Automated: 3.18 0.69 3.19 0.70  -0.06 3.22 0.68 3.17 0.96 0.26
21 Verbal Rate 1.88 0.79 1.69 0.57 1.19 2.21 0.80 2.07 082 074
Automated: 2.03 0.79 1.76 0.61 1.65 2.32 0.87 2.13 0.83 0.96
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tween each word. The output then contains the location in the
speech signal of each word and pause event. Our baseline forced
alignment system [39] has performance comparable to, or better
than, the best systems reported in the literature, placing 91.5% of
phoneme boundaries within 20 ms of manual boundaries on the
TIMIT corpus.” For the current task, this baseline forced-align-
ment system was re-trained with two primary modifications.
First, acoustic data from the current Wechsler LM corpus were
used to train the system, in addition to data from several other
corpora (TIMIT, OGI Stories, and OGI Portland Cellular), using a
two-fold cross-validation procedure. Second, because of the dif-
ferent channel characteristics of the four corpora used in training
the system, the standard feature set of 13 cepstral coefficients and
their delta values was replaced by a set of spectral features. The
spectral features included 26 values from the log power spectrum
sampled along the Mel scale. Adaptive pre-emphasis was per-
formed to remove the effects of spectral tilt, and this pre-emphasis
value was included, along with total energy (in dB), for a total of
28 spectral features at each frame. The final feature set consisted
of these 28 features and their delta values at the center frame,
and these 28 features at frames —60,—30, 30, and 60 ms relative
to the center frame, for a total of 168 feature values per frame.

7Boundary agreement between two humans on the TIMIT corpus is 93.5%
within 20 ms.

Performance of the re-trained forced-alignment system was
evaluated by measuring the difference in word boundaries ob-
tained from manual annotation and from forced alignment. The
baseline system from [39] placed 72.8% of word boundaries
within 100 ms of manual boundaries on the MCI corpus. With
the above domain adaptation techniques, the resulting system
had average test-set performance of 84.0% of word boundaries
placed within 100 ms of manual word boundaries on the MCI
corpus. The remaining large error (16.0%) relative to other test
setsindicates the sensitivity of even the re-trained system to back-
ground noise, including non-speech sounds and breath noise. The
re-trained system tends to incorrectly assign small background
noises, when surrounded by very long pauses, to speech events.
Whileitis unknown to what degree these errors impact the signifi-
cance of speech measures for MCI, improving performance of the
forced-alignment system will be a subject of future research.

D. Group Differences

Table IV presents means and standard deviations for mea-
sures derived from the LM I and LM II retellings, along with
the ¢-value and level of significance. Feature IDs are given in
the table for reference in the next section of the paper. The first
three measures presented in the table are available without syn-
tactic or time alignment annotation: total number of words, total
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number of utterances, and words per utterance in the retelling.
None of these three measures on either retelling show statisti-
cally significant differences between the groups.

The first measure to rely upon syntactic annotations is words
per clause.8 The number of clauses are calculated from the
parses by counting the number of S nodes in the tree.® Normal-
izing the number of words by the number of clauses rather than
the number of utterances (as in words per utterance) results in
statistically significant differences between the groups for both
LM I and LM II. This pattern is evident in both the automated
and the manual results.

The other language measures are as described in Section III.
The Frazier score per word, the number of tree nodes per word,
and the P-density score per word do not show a significant
t-value on the LM retellings for either LM test.

The Yngve score per word and the dependency length per
word show no significant difference on LM I retellings but a
statistically significant difference on LM II. See Section V for a
discussion of why differences should be expected between the
immediate and delayed retellings.

The POS-tag cross entropy, when calculated using models
adapted to this domain (Logical Memory tests)—denoted
“POS cross entropy (LM)”—shows a statistically significant
difference between groups for LM I. Without such domain
adaptation—denoted “POS cross entropy (SW)” for Switch-
board—we do not observe a statistically significant difference
between groups. This is apparent in both the automatically and
manually parsed/tagged data.

While P-Density did not show significant group differences,
content density appears to be a particularly useful measure for
discriminating between the two groups, with a statistically sig-
nificant difference here for both LM tests. Given the relatively
high quality of the automatic parses, most of the means and stan-
dard deviations are quite close, and almost all patterns derived
from the manually parsed data are also true of the automatically
parsed data.

For manual annotation, the Standardized Pause Rate for LM I
and Total Phonation Time for LM I and LM Il yield a significant
difference between CDR 0 and CDR 0.5 subjects. For speech
and pause annotation obtained from forced alignment, however,
the Standardized Pause Rate, Phonation Rate, and Transformed
Phonation Rate all show significant differences for LM I. Total
Phonation Time is the only automatic measure that shows a sig-
nificant difference for LM II.

It is not immediately clear why the forced-alignment system,
which has only 84% agreement with manual annotation at large
(100 ms) thresholds, yields significant differences for a larger
number of speech measures than manual annotation. One possi-
bility is that the long pauses that cause difficulty for the forced-
alignment system are actually detrimental to the value of the
measures, and “breaking up” these very long pauses, even if in-
correctly, allows the measures to focus on the (hypothetically)
more important shorter pauses. The relative contribution of short
and long pauses to these measures, therefore, will be the topic
of future work.

8Note that the automatic parsing used to derive the language measures did
not remove EDITED or PRN substrings or nodes from the utterances or derived
trees.

9For coordinated S nodes, the root of the coordination, which in Penn Tree-
bank style annotation also has an S label, does not count as an additional clause.
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E. Classification Trials

We used SVMlight [40] to train support vector machine
classifiers using a second-order polynomial kernel and default
parameterizations for all trials reported here. Feature values
were normalized to fall between O and 1 in each training set,
by finding the maximum and minimum values for each feature
in the training set; the same normalization function was then
applied to the left-out pair.!0 The most common method for
evaluating classifier quality is the Receiver Operating Charac-
teristics (ROC) [41], which plots the sensitivity (true positive
rate) of the classifier versus 1—specificity (false positive rate)
of the classifier as the classification threshold moves from the
most positive threshold (everything true) to the most negative
threshold (everything false). A random classifier would have
a straight line connecting (0,0) to (1,1). The quality of the
classifier is measured as the area under the ROC curve (AUC),
also known as the Wilcoxon-Mann-Whitney statistic [42], which
is an estimate of the probability that a randomly chosen positive
example would be ranked higher than a negative example by
the classifier. Let s(e) be the score returned by a classifier for
a test example e. Note that the boolean value [s(x) > s(y)] is
1if s(x) > s(y) and O otherwise. Then the AUC over a set of
positive examples P and negative examples N is defined as

AUC(s, P,N) Z > lsp) > s(n)]. 3

|P|| pGPnEN

Confidence intervals can be defined for this statistic, allowing
for meaningful comparison between classifiers. For the current
results, we follow [42] and calculate the variance of the AUC,
which we denote A below for compactness, using the following
formula:

42)

A1 AP (- 22)+ (] -1) (35 -
@)

4 |P[| N

We follow a leave-pair-out cross-validation method for calcu-
lating the AUC, which is a generalization of the leave-one-out
method that is used for cost functions defined over pairs, such
as the AUC [43], [44]. Leave-pair-out cross-validation has been
shown to provide an unbiased estimate of the error [43]. We
use a brute force method to calculate the AUC in this fashion,
training a separate classifier for each positive/negative pair, of
which there are (37)? = 1369 in the current case.

In Table V, we present the AUC and standard deviation for
classifiers using different feature sets. To be precise about which
features were used in which trials, Table V shows feature and
test ID numbers, which refer back to features and tests shown
in Tables I and IV.

The first three rows of Table V show results using just speech
and language derived features, with no test scores. If we use all the
automated speech and language derived features from Table IV,
the classifier is seriously over-parameterized (row 1); hence, we
selected just those features that showed significant group differ-
ences in Table IV. The language features thus selected are: words
per clause, Yngve per word, dependency length per word, POS
cross-entropy (from LM transcripts), and content density, all on
Wechsler LM I and II transcripts. The speech features selected
were standardized pause rate, total phonation time, phonation

10Note that test-set feature values transformed with such a function can be
negative or greater than 1, hence not strictly constraining the values to [0, 1].
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TABLE V
LEAVE-PAIR-OUT CLASSIFICATION RESULTS. SEE TABLES I AND IV FOR TEST AND FEATURE ID NUMBER REFERENCE

Feature Set AUC o

Automated language features 1-12 + automated speech features 13-21 0.627 | 0.649
Automated language features 4, 7-9, 12 + automated speech features 16-19 0.703 | 0.061
Automated language features 4, 7-9, 12 0.732 | 0.058
Test scores 4, 5 0.749 | 0.057
Test scores 4, 5 + automated language features 4, 7-9, 12 0.775 | 0.055
Test scores 1-9 0.815 | 0.050
Test scores 1-9 + automated language features 4, 7-9, 12 0.854 | 0.045
Test scores 1-9 + automated language features 4, 7-9, 12 + automated speech features 16-19 | 0.861 | 0.044

rate, and transformed phonation rate, all on both LM I and II
retellings. Restricting the classifier to just these features yields
a significant improvement (row 2), and in fact restricting to just
the significant language features was even better (row 3). Note,
however, that this performance is not better than just using the
Wechsler Logical Memory test scores (immediate and delayed)
by themselves (row 4). Combining the features from rows 3 and
4 yield small improvements in classification (row 5), but not as
much as combining scores from all of the tests reported in Table I
(row 6). However, combining all test scores with automatically
derived language features yields an additional 4% absolute im-
provement in AUC, and automatically derived speech features
provide an additional 0.7%, for a total 4.5% improvement in
AUC beyond what was achieved with test scores alone.

V. DISCUSSION AND FUTURE DIRECTIONS

The results presented in the last section demonstrate that NLP
and speech processing techniques applied to clinically elicited
spoken language samples can be used to automatically derive
measures that may be useful for discriminating between healthy
and MCI subjects. In addition, we see that different measures
show different patterns when applied to these language samples,
with some measures (Yngve, dependency length) showing dif-
ferences on LM II but not LM [; and others (e.g., POS-tag cross
entropy) showing complementary patterns. Given that LM I is
an immediate recall test, hence presumably including more ver-
batim recall among healthy subjects than in the delayed LM II
test, such complementary patterns are perhaps not surprising.

The differences in the significance of the Yngve score and
dependency length between LM I and LM II seem to be caused
by an increase in the average of those scores for unimpaired
subjects and a decrease of those scores for impaired subjects
across the two retellings. This follows the trend in number of
words per retelling. We do not have a definitive explanation for
this observed pattern, but it is an interesting signature of MCL.

Three markers that Singh et al. found to be significant were
not significant in our study, namely Mean Duration of Pauses,
Standardized Phonation Time, and Verbal Rate. These markers
did not yield a significant difference in either manual or auto-
mated annotation. There were two markers that Singh ez al. did
not find significance for, but which they still thought contributed
to discrimination between the two groups when combined with
other markers. These two markers, Standardized Pause Rate and
Phonation Rate, were significant by themselves in our study,
particularly for the case of automated annotation. While lan-
guage features achieved more statistically significant group dif-
ferences, both feature sets contributed to the improvements in
classifier performance presented in Section IV-E.

The differences in the significance of speech-based markers
between the Singh er al. paper and this paper may be due to

the large number of differences between the two studies, in-
cluding the number of subjects, inclusion criteria for the two
subject groups, test material (open-ended questions in the pre-
vious study and story retellings in our study), and measurement
tools. Perhaps most notable is the difference in mean age of sub-
jects: 61 for healthy and 68 for impaired in their study; 89 for
healthy and 90 for impaired in this study. Also, their impaired
subjects had been diagnosed as suffering from dementia. Our
subjects were in a much earlier stage of cognitive decline char-
acteristic of the MCI syndrome. The markers that were consid-
ered informative in both studies, despite these differences, are
therefore of particular interest.

In summary, we have demonstrated an important clinical
use for NLP and speech-based techniques, where automatic
syntactic annotation provides sufficiently accurate parse trees
for use in calculation of linguistic complexity measures, and
forced alignment provides sufficiently accurate classification
of speech and pause regions for use in speech-based measures.
Different linguistic complexity measures appear to be mea-
suring complementary characteristics of the retellings, yielding
statistically significant differences from both immediate and
delayed retellings. Classifiers making use of these features
yielded significantly better ROC curve performance than those
relying just on summary test scores.

There are quite a number of questions that we will continue to
pursue. Most importantly, we will continue to examine this data,
to try to determine what characteristics of the spoken language
are leading to the unexpected patterns in the results. Eventually,
longitudinal tracking of subjects may be the best application of
such measures on clinically elicited spoken language samples.
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